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Figure 1: We introduce an efficient primitive pruning algorithm for CSG trees that encode Signed Distance Fields (SDFs). For a region of
space, we reduce binary operators to one of their operands, or completely replace sub trees with constant expression, which greatly reduces
the complexity of the SDF. We achieve speedups up to two orders of magnitude when compared to classical sphere tracing, for instance we
reach ×629 on this scene made of 6023 nodes.

Abstract
Rendering tree-based analytical Signed Distance Fields (SDFs) through sphere tracing often requires to evaluate many prim-
itives per tracing step, for many steps per pixel of the end image. This cost quickly becomes prohibitive as the number of
primitives that constitute the SDF grows. In this paper, we alleviate this cost by computing local pruned trees that are equiva-
lent to the full tree within their region of space while being much faster to evaluate. We introduce an efficient hierarchical tree
pruning method based on the Lipschitz property of SDFs, which is compatible with hard and smooth CSG operators. We pro-
pose a GPU implementation that enables real-time sphere tracing of complex SDFs composed of thousands of primitives with
dynamic animation. Our pruning technique provides significant speedups for SDF evaluation in general, which we demonstrate
on sphere tracing tasks but could also lead to significant improvement for SDF discretization or polygonization.

1. Introduction1

Signed distance fields (SDFs) are a powerful surface representa-2

tion for modeling and animating shapes of arbitrary topology. As3

opposed to meshes, they naturally provide non-trivial modeling4

operators such as Boolean operations, smooth blending and off-5

set surfaces. They also come in an incredibly compact format,6

as one only needs to store the expression of the function rep-7

resenting the surface. The ability to build complex shapes using8

SDFs makes them the representation of choice for easy-to-use9

3D modeling software, which have seen a recent rise of popular-10

ity [Wom22, Mag22, Neo23].11

More precisely, SDFs are implicit surfaces representing shapes12

as the 0-level set of a scalar function f : R3→R with the following13

properties:14

• | f (p)| is the exact distance from p to the surface.15

• f (p) is positive if p is outside the shape, and negative if inside.16

We consider the more general family of lower-bound (often quoted17

conservative) SDFs, for which | f (p)| is a lower bound on the exact18

distance from p to the surface. A key property of lower-bound SDFs19

is that they are 1-Lipschitz: ∥∇ f∥ ≤ 1. In this paper, we refer to20

SDFs as the wider family of lower-bound and exact SDFs, which21

our method can process similarly.22

The implicit nature of SDFs makes their efficient rendering chal-23
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lenging. One can either resort to indirect polygonization, or direct24

ray-tracing. Polygonization techniques first discretize the SDF over25

a finite domain – usually a regular grid or an octree – and extract a26

polygon mesh from this discretization. While these fit in traditional27

graphics pipeline, they are not without issues: on top of possible28

topological errors, sharp and detailed features are difficult to cap-29

ture without a very fine grid, leading to a high memory footprint.30

On the other hand, ray-tracing directly computes the intersection31

between a camera ray and the isosurface. Sphere-tracing [Har96]32

has been the go-to algorithm for the past three decades, thanks to33

its simplicity and its embarrassingly parallel nature. However, it re-34

mains computationally expensive, scaling linearly with the number35

of pixels as well as with the SDF complexity. Several approaches36

have been proposed to improve sphere tracing performance. These37

includes reducing the number of marching steps through heuristics38

or local Lipschitz bound computation [KSK∗14, GGPP20, BV18,39

AZ23], but at the cost of increasing single step computations, mit-40

igating the resulting gain. Alternatively, reducing the complexity41

of the function evaluation can be performed by pruning its expres-42

sion, retaining only the instructions that contribute to the distance43

value for a given region of space. However, existing algorithms44

suffer from the significant overhead of an interval arithmetic inter-45

preter [Kee20] or are limited to implicit functions with local sup-46

port [FGW01] and thus not applicable to SDFs. We fill this gap47

in the literature by providing a pruning algorithm that is tailored48

to the SDF representation and exploits the 1-Lipschitz property to49

conservatively prune the input tree without the overhead of interval50

arithmetic, and achieves similar pruning efficiency. Our contribu-51

tions are as follows:52

1. A spatially-varying pruning algorithm that reduces the number53

of primitives and operators evaluated at a given point in space,54

compatible with CSG and smooth operators.55

2. A hierarchical scheme for this pruning, compatible with GPU56

implementation, that allows our method to scale to large scenes.57

3. A far-field culling method that reduces subtrees to constant dis-58

tances, which in turn provides even faster evaluation.59

Our contributions are conceptually simple, easy to implement, and60

allow to speedup the function evaluation in scenarios such as sphere61

tracing and discretization, for SDFs scenes made of thousands of62

primitives and operators.63

2. Related Work64

In this section, we review existing techniques for ray tracing im-65

plicit surfaces, and particularly SDFs. They often come in two main66

flavors: they can be either analytic, i.e. the mathematical expression67

of the distance function is evaluated at runtime, or they can be dis-68

crete, i.e. the function is represented by a finite set of samples, and69

their corresponding values are interpolated at runtime to provide a70

distance. Even though our method is developed for analytic SDFs,71

we also briefly discuss discrete representations when relevant.72

Sphere tracing and variants. Sphere tracing [Har96] is the stan-73

dard algorithm to raytrace signed distance fields. The core idea is74

to advance along the ray by the distance evaluated at the current75

point, with the guarantee to not miss any intersection with the sur-76

face thanks to the unbounding sphere property. A common issue77

is that rays that get close to the shape require a significant num-78

ber of steps to reach or discard the intersection (the grazing rays79

problem). Several variants were created to reduce the number of80

steps needed to compute the ray-surface intersection. Keinert et81

al’s relaxed sphere tracing [KSK∗14] extends the step size by a82

constant factor, using the fact that no intersection can be missed if83

the empty spheres between two consecutive steps overlap. Bálint84

and Valasek’s enhanced sphere tracing [BV18] is built on the same85

idea, but rather than scaling the step size by a fixed factor, they com-86

pute a local linear approximation of the SDF and use this approx-87

imation to compute an optimal step size. Bàn and Valasek [BV23]88

extend this approach by using exponential averaging of the slope.89

Segment tracing [GGPP20] computes local Lipschitz bounds along90

ray segments, which allows to take longer steps without back-91

tracking. While the first two approaches can process black-box92

SDFs, segment tracing require knowledge of the underlying Blob-93

Tree [WGG99], and is limited to primitives and operators where94

local Lipschitz bounds can be computed. Sphere tracing may also95

be viewed as the process of bounding the distance function by two96

affine functions with slopes equal to the (global or local) Lipschitz97

constant. In this spirit, forward inclusion functions [AZ23] gener-98

alize the standard Lipschitz bounds with asymmetric (lower and99

upper) and higher-order bounding functions. These bounds can be100

computed either by analyzing the CSG tree or using interval arith-101

metic [Duf92].102

Primitive pruning. A common representation for an implicit sur-103

face is a construction tree or graph, where nodes are functions104

describing simple geometric primitives or composition operators105

such as CSG operators, smooth blending, or affine transformations.106

The goal of pruning is to determine which nodes in the construc-107

tion tree contribute to the distance value for a given input region.108

Claybook [Aal18] evaluates the distance to every primitive at the109

center of the region and checks if it is lower than the radius of110

the region, with an additional safety margin for smooth blend-111

ing operators. Unfortunately this approach leads to incorrect re-112

sults when the blending radius grow beyond the safety margin.113

Pujol and Chica [PC23] accelerate the computation of the dis-114

tance to a triangle mesh by precomputing an octree where every115

cell stores a list of active triangles. Their method is limited to116

triangle meshes, and is not usable in the context of hierarchical117

SDFs with arbitrary primitives and smooth blending operations.118

Closer to our method, Keeter [Kee20] describes a GPU-friendly119

hierarchical culling algorithm for general implicit surfaces. They120

translate the arithmetic expression of the implicit function into121

a tape of instructions later interpreted on the GPU. Then, for a122

given region they rely on interval arithmetic to determine which123

clauses can be safely removed from the tape without changing124

the result of the computation. This is done in a hierarchical man-125

ner: the large regions are split in smaller regions that use the re-126

duced tape of their parent as a starting point for their own culling.127

Dreams [Eva15] uses a hierarchical culling scheme specifically tai-128

lored to SDFs, but their algorithm is limited to a linear array of129

primitives and is not fully described. Zanni [Zan23] describes how130

to design compact operators for SDFs, which in turn allows to131

prune them in screen-space and reduce computations. However,132

the Lipschitz bound is not preserved, which may lead to miss-133

ing ray-surface intersections when rendering the SDF. In contrast,134
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Figure 2: Our method takes as input a smooth CSG tree that defines a SDF function and its associated surface (a). Upon any modification
of the SDF, which can happen in real-time, we compute a spatially-varying pruning of the tree (b). At runtime, this pruning allows fast
evaluations of the SDF, useful when sphere-tracing the surface or when discretizing the SDF into a dense grid (c).

our pruning algorithm preserves the Lipschitz property, operates135

in the 3D space (which allows for optimizing secondary rays),136

and guarantees that the SDF evaluates to the same distance value137

after pruning. Alternatively, hierarchical trees with compact sup-138

port [WGG99], also called BlobTrees, have been widely studied139

over the years [SWSJ07,GLA00,FJW∗05,FGW01,GDW∗16], and140

are similar to the smooth CSG SDFs that our work focuses on.141

A key difference is that since the density field of primitives has a142

compact support, it is straightforward to compute bounding boxes143

for every node in a BlobTree. To our knowledge, all existing ap-144

proaches to prune such structures are based on the computation of145

these bounding boxes [WGG99, FGW01], which do not translate146

to signed distance fields with global support that are widely used147

in practice [JQ14]. Still, some ideas developed in the literature do148

translate to our setting, such as efficient post-order traversal and149

left-heavy stack optimization [GDW∗16] which can be applied to150

smooth CSG SDFs.151

3. Method152

3.1. Overview153

We aim at reducing the cost of a single evaluation of the signed dis-154

tance function by pruning or even replacing parts of its construction155

tree that are not relevant to a region of space. To that end, we de-156

veloped two procedures: (i) a (hierarchical) pruning algorithm that157

reduces the number of active nodes in a region of space, and (ii) a158

far-field culling that replaces the whole tree with a constant expres-159

sion when sufficiently far from the surface (Figure 2).160

Our pruning algorithm (Sec. 3.4) relies on two important obser-161

vations, namely (i) for a given point in space only a small subset162

of nodes needs to be evaluated to get the final value, and (ii) this163

subset tends to be coherent in space due to the inherent property of164

the distance function in Euclidean space. For a region of space e.g.,165

a grid cell, we compute the subset of nodes needed to be evaluated166

for at least one point in the region – which we call active nodes167

– and output a pruned tree that is equivalent to the full tree when168

evaluated inside the input region (see Figure 3). This pruning is169

executed in a hierarchical manner (Sec. 3.5), which makes it scale170

gracefully to large scenes with thousands of nodes that would not171

be possible otherwise due to memory constraints.172

We also observe that further away from the surface, the math-173

ematical expression may be reduced even more. This is the focus174

of our far-field culling optimization (Sec. 3.6) that reduces trees175

to constant expressions. While not exact, the reduced constant re-176

mains a lower bound on the distance, and allows large sub trees to177

be evaluated in constant-time which proves to be more efficient.178

(a) Signed Distance Field (b) Per-cell pruned tree

Figure 3: Our primitive pruning procedure (Section 3.4) consumes
a smooth CSG tree that describes a Signed Distance Field made of
different primitives (spheres, boxes) and operators (CSG operators
and their smooth variants) (a), as well as a region of space (e.g.,
blue or green squares). The output is a per-cell pruned tree (b) that
evaluates to the same signed distance values within the region.

Our pruning and far-field optimization contributions are com-179

plementary to each other. Pruning greatly reduces the number of180

primitives evaluated when close to the surface, and far-field culling181

reduces the construction tree to constant expressions further away182
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from the shape. Together, they makes the SDF evaluation signifi-183

cantly faster in context such as sphere tracing, or when discretizing184

the function for a later mesh extraction (see Section 5).185

3.2. Smooth CSG Tree186

We encode SDFs as binary trees, in the spirit of the Blob-187

Tree [WGG99]. Leaf nodes represent primitives and compute188

the signed distance to a potentially transformed geometric shape189

(sphere, box, cone, etc.). Internal nodes are binary operators that190

combine the distances evaluated from their subtrees (CSG opera-191

tors and their smooth variants). The actual distance function is de-192

fined as the expression for the root of this smooth CSG tree. We193

focus specifically on exact and conservative SDFs where the dis-194

tance function f preserves the 1-Lipschitz property (∥∇ f∥ ≤ 1 ev-195

erywhere [Har96]).196

Figure 4: Tree annotation. The operators used in the input smooth
CSG Tree (a) need to provide our pruning algorithm with the sign
s and the potential complementary flags ca, cb, stored in children
(b).

3.3. Pruning Constraints197

To enable effective pruning, we need an additional constraint on198

each binary operator: it must reduce to one of its operands or its199

complementary when they are sufficiently far apart. We show below200

that this is met by classical hard CSG operators (namely union,201

intersection, and difference) as well as their smooth counterparts.202

Formally, for a binary operator OP we require a blending radius203

k ∈ R, a sign s = ±1 and two complementary flags ca = ±1 and204

cb = ±1 to define this constraint. The flag ca (resp. cb) specifies205

whether the operator reduces to its operand A (resp. B) or to the206

complementary −A (resp. −B). The sign s encodes whether the207

comparison is ≤ or ≥ in our formal constraint:208

if |a′−b′|> k, OP(a,b) =

{
a′ if s ·a′ ≤ s ·b′

b′ otherwise
(1)

where a′ = ca · a is derived from the distance a returned by the209

operand A by flipping its sign when OP may reduce to the comple-210

mentary of A. Similarly, b′ = cb · b is derived from the distance b211

returned by the operand B. The blending radius k represents the dis-212

tance at which we can reduce the operator to one of its operands - its213

value varies depending the underlying operator formula, as shown214

below.215

Figure 5: An operator that combines operands A and B is marked
as skipped by Procedure 1 if the bounding sphere of the region
under consideration does not overlap with the points such that
|a− b| ≤ k (green area). In this example, the UNION operator is
skipped when pruning for region centered at p with radius R, but it
cannot be skipped for the region centered at p′. Shades of red are
the positive isolines of the signed distance to UNION(A,B), shades
of blue are the negative isolines of this same distance and dashed
lines are the positive isolines of |a−b|− k.

Smooth Blending operators. Without loss of generality, the bi-216

nary operators that we use are the smooth CSG operators with a217

user-specified blending radius k:218

UNION(a,b,k) = min(a,b)−φ(|a−b|,k)
INTER(a,b,k) = max(a,b)+φ(|a−b|,k)

SUB(a,b,k) = max(a,−b)+φ(|a+b|,k)

where φ(d,k) is a blending kernel that vanishes to 0 as d approaches219

k such that when k = 0, they correspond to hard CSG operators. In220

practice, we use quadratic blending [DVOG04, Qui24b], namely221

φ(d,k) = 1
4k max(k− d,0)2. These smooth CSG operators fulfill222

constraint (1) since when φ(d,k) = 0 they can all be reduced to one223

of their operands. For these operators, we use the following values224

for ca, cb, and s:225

OP ca cb s
UNION +1 +1 +1
INTER +1 +1 -1
SUB +1 -1 -1

226

To efficiently handle all smooth CSG operators ca (resp. cb) are227

also stored as a sign cFlag in the child node A (resp. B) (Figure 4).228

For our pruning procedure, we also consider a bounding box that229

contains the scene to be provided as input.230

3.4. Pruning algorithm231

For complex scenes with hundreds of nodes or more, the smooth232

CSG tree can grow quite large, which increases the cost of a single233

SDF evaluation as it needs to traverse the whole tree. Our pruning234

algorithm takes as input a region of space (a grid cell in practice),235

computes the subset of active nodes needed to be evaluated for at236

least one point in the region and outputs a pruned tree that is equiv-237

alent to the full tree when evaluated inside the input region (see238
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Figure 6: Our pruning algorithm consists in two traversals of the input smooth CSG tree. The first one evaluates the local state of a node
with respect to a given grid cell (a), the second reassigns node parents to prune inactive sub-trees and remove skipped nodes (b). The result
is a pruned tree that is equivalent to the input one for points of the grid cell under consideration. (c). Complementary flags are a compact
way to keep track of sub-trees whose sign must be inverted when skipping some operators.

Figure 3). Since points that are close to each other in space are239

likely to share the same subset of contributing nodes, the set of ac-240

tive nodes tends to shrink rapidly as the size of the region of interest241

diminishes.242

Overview. Our pruning procedure consists in two consecutive243

traversals of the original smooth CSG tree. The first one evaluates244

a local state of each node, relative to the input region. The second245

one deduces the global contribution of each node and rewires par-246

enting so as to prune unused sub-trees and drop operators that can247

be skipped, effectively building a pruned tree valid for the whole248

region (Figure 7).249

Traversal #1. We first do a post-order traversal during which we250

compute the local state of every node (Figure 6.a):251

• A node is inactive if it does not contribute to the value of its par-252

ent node: the whole sub-tree rooted at this node can be pruned.253

• A node is skipped if it contributes to the value of its parent, but254

can be replaced by one of its children or its complementary. For255

example, in the expression min(min(a,b),c), if a < b then the256

inner min can be replaced by its left operand a.257

• A node is active if it contributes to the value of its parent and258

cannot be replaced by one of its children, or has no children.259

We take advantage of the fact that all the expressions are 1-260

Lipschitz: we detect binary operators that can be safely skipped261

using a single evaluation of their operands. Considering an operator262

with child expressions f1 and f2, and a region of radius R centered263

on a point p, if | f1(p)− f2(p)| ≥ k+2R it follows that | f1− f2| ≥ k264

for all points in this region (see Appendix A). This implies that we265

can replace the operator with one of its children due to Equation 1266

(see Figure 5). In this case we mark the operator node as skipped,267

Figure 7: Simplified overview of our hierarchical pruning algo-
rithm in 2D. Starting from the global smooth CSG tree, our prun-
ing algorithm (right) computes pruned trees that are equivalent in
distance evaluation but with lower complexity. The process is iter-
ative and leads to simpler pruned trees that are stored per-cell in a
hierarchical manner (left).

and depending on the sign of f1(p)− f2(p) we mark one of the268

children as inactive (see Procedure 1).269

Our Lipschitz constraint allows to estimate bounds of f1 − f2270

on a region using a single evaluation. While range arithmetic is271

a more generic yet more costly approach to obtain SDF bounds272

on regions [SJ22], we show in Figure 8 that in practice, Lips-273

chitz bounds, when available, have similar pruning capabilities than274

those obtained with affine or interval arithmetic.275
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Traversal #2. The role of the second traversal (Figure 6.b) is to276

determine the global state of the nodes. While the local state only277

tells whether a node contributes to the value of its direct parent,278

the global state tells whether the node contributes to the full tree279

evaluation. A node contributes to this final value if it is active and280

there are no inactive nodes among its ancestors.281

We compute the global state for every node through a pre-order282

traversal of the tree (see Procedure 2). We set a node as globally ac-283

tive if there is no locally inactive node among its ancestors. During284

this traversal we also update the parent (line 11) – the new parent of285

a node is its closest ancestor that is not skipped – and we propagate286

the complementary flag of skipped nodes to their children (line 12).287

Finally, we also count the number of globally active nodes (i.e the288

size of the pruned tree) during this traversal (line 15).289

Procedure 1: ComputeLocalState(nodes, p, R)
Input :
• nodes: array of nodes
• p: cell center
• R: cell radius
Output: Local state of the nodes relative to the cell centered

at p with radius R.

1 stack←{} // Entry: (distance, node idx)
2 foreach i ∈ PostOrderTraversal(nodes) do
3 n← nodes[i]
4 if IsLeaf(n) then
5 n.state← ACTIVE
6 d← EvalPrimitive(p, n.primData)
7 else
8 (b′, right)← stack.pop()
9 (a′, left)← stack.pop()

10 {OP,k,s,ca,cb}← n.blendData // see (1)

11 if |a′−b′|> k+2R then
12 if s ·a′ ≤ s ·b′ then
13 nodes[right].state← INACTIVE
14 else
15 nodes[left].state← INACTIVE
16 end
17 n.state← SKIPPED
18 else
19 n.state← ACTIVE
20 end
21 d← OP(ca ·a′, cb ·b′, k)
22 end
23 stack.push((n.cFlag · d, i))
24 end

3.5. Spatial hierarchy290

Applying this procedure directly for all cells of a dense grid leads291

to two different issues in practice. First, the size of each output292

pruned tree is not known in advance. In the worst case where every293

cell outputs the full input tree, memory allocation would not scale294

up for large scenes and dense grids. Second, evaluating the full tree295

for each cell of a dense grid would be time-consuming. Indeed, the296

Procedure 2: ComputeGlobalState(nodes)
Input:
• nodes: array of nodes with their local state
Output:
• A boolean flag for every node (activeGlobal) set to TRUE if the

node is part of the pruned tree.
• The number of globally active nodes.

1 numActiveGlobal← 0;
2 foreach i ∈ PreOrderTraversal(nodes) do
3 n← nodes[i];
4 if n.state = INACTIVE then
5 n.activeGlobal← FALSE;
6 n.inactiveAncestors← TRUE;
7 else
8 n.inactiveAncestors← n.parent.inactiveAncestors;
9 n.activeGlobal← n.state = ACTIVE and not

n.inactiveAncestors;
10 if n.parent.state = SKIPPED then
11 n.parent← n.parent.parent;
12 n.cFlag← n.cFlag × n.parent.cFlag;
13 end
14 if n.activeGlobal then
15 numActiveGlobal← numActiveGlobal + 1;
16 end
17 end
18 end

Figure 8: Pruning ratio. Amount of pruned primitives on a 2D test
scene (a), computing the bounds of f1− f2 for each cell of a reg-
ular grid and each binary operator using: our Lipschitz constraint
(b), affine arithmetic (c), and interval arithmetic (d). Our method
leads to a slightly better pruning ratio and only requires a single
evaluation of the SDF, while others are significantly more invasive.

complexity of such an approach would scale linearly not only with297

the number of cells in the grid, but also with the tree size.298

We address these two issues using a spatial hierarchy: starting299

from a coarse grid, we iteratively subdivide each cell and apply our300

pruning procedure to compute a finer grid until a target resolution301

is reached. More specifically, the input of the pruning procedure302

for a given cell is the pruned tree computed for the parent cell in303

the previous grid, as seen in Figure 7. In practice, this approach304

reduces the memory footprint and speedups computations. Indeed,305

at each step the pruned tree becomes smaller, allowing less mem-306

ory to be allocated at the next iteration, and faster computing of the307

next iteration as opposed to using the full tree. The pruning effec-308
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tiveness increases with the hierarchy levels resolution as illustrated309

in Figure 9.310

Although we use a regular grid in our implementation, any hi-311

erarchical structure may be used instead (octrees, kd trees, etc.).312

In addition to its simplicity, the regular grid also provides efficient313

random access, which is suited for sphere tracing or any applica-314

tion that require parallel SDF queries on the GPU. All in all, our315

hierarchical pruning procedure is fast enough to be useful in con-316

texts where the scene is modified (i.e. a parameter of a primitive is317

changed, new sub trees are added or deleted, etc.), as discussed in318

Section 5.319

Figure 9: Pruning ratio shown as a heat-map on the Raccoon scene
surface (a), for three different levels of our hierarchy with respec-
tive grid resolutions of 163 (b), 643 (c), and 2563 (d).

3.6. Far-field culling320

In order to further speed up tasks that can operate on SDFs while321

being conservative rather than exact, we optimize cells that are far322

away from the 0-isosurface, a.k.a. the far-field. We take inspira-323

tion from the narrow-band optimization commonly used in dis-324

crete SDF rendering [Eva15, Aal18, Söd21, SEAM22] to replace325

trees in far-field cells by an approximate tree made of a single con-326

stant node, whose value is given by the heuristic described below.327

Although this approximation is not differentiable nor continuous,328

it is guaranteed to give a lower-bound distance field that shares the329

same 0-isosurface as the input SDF, and can thus be safely used for330

sphere-tracing or contouring tasks (see Table 1).331

Conservative heuristic. After the first traversal (Procedure 1), we332

check whether the SDF evaluated at the cell center d = f (p) is333

greater than C · R, where R is the cell radius and C is a constant334

factor that controls the size of the near-field. When |d| > C · R,335

the cell is considered far and its tree is replaced with the constant336

sign(d) · (|d|−R). It is important that C > 1, to assert that the cell337

is surface free, which ensures that the approximate SDF remains338

conservative. When C gets larger, the narrow band in which we ex-339

actly preserve the input SDF gets thicker. As such, less cells are340

replaced by a single node, but the ones that get replaced contain a341

larger minimal constant as | |d|−R|> (C−1) ·R.342

When doing sphere tracing, a value of C too close to 1 leads to343

small step sizes which results in poor performance. On the con-344

trary, when C is too large, the condition |d| > C ·R is never met345

and thus none of the cell is deemed far. In practice, we use C = 2,346

Near field

Pruning ratio

100%50%

Figure 10: Near field and pruning ratio for a 2D slice. For all cell
in the far field (i.e. outside the near field), we replace its tree with a
single constant value. This drastically reduces the SDF complexity
in regions of space with low pruning capabilities, typically far from
the surface, while preserving a lower-bound on the distance.

which guarantees that the tracing takes at most 2 steps to cross a347

far-field cell while keeping the size of the near-field small enough348

to significantly improve performance.349

Benefits. This far-field culling has a good synergy with our prun-350

ing algorithm. Indeed, many regions that have a low pruning po-351

tential occur in the far-field, when multiple surfaces are equally far352

from the cell. Figure 10 shows that many of these low pruning ra-353

tio regions fall out of the near-field, allowing our far-field culling354

to simplify their SDF and thus avoid a lot of costly computation355

both during the second traversal of the pruning and during the final356

evaluation of the SDF.357

4. GPU implementation358

We implement our algorithm using compute shaders, with one dis-359

patch per level of the hierarchy. Starting from the coarser level, we360

iteratively perform a single dispatch to compute the next level of361

our grid hierarchy. In each dispatch, we spawn one thread per tar-362

get grid cell: every thread computes and writes the pruned tree of363

its cell, given the pruned tree of its parent cell from the previous364

level. Similarly to [Kee20] we use a 4× 4× 4 subdivision for the365

hierarchical grid, which ensures that all threads in a warp have the366

same parent cell to eliminate divergence.367

Data representation. At each iteration, each cell of the grid stores368

a tree of variable size. We then represent a grid as three arrays,369

namely the cell array, the mutable node array and the immutable370

node array (see Figure 11). The cell and mutable node arrays are371

double-buffered: one copy is read, from a coarser level, while the372

other is written, to a finer level. Arrays are switched after each dis-373

patch.374

The immutable node array is the input of our system, and con-375

tains all data related to the construction tree of the SDF: the prim-376

itives and binary operators data. This array is not affected by the377

pruning, hence stored once without needing duplication.378

The mutable node array represents the data modified by the prun-379

ing, and thus needs to be stored separately for all cells. Each el-380
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Mutable node array

Cell array*

*

Immutable node array

Cell Grid CSG Tree

Figure 11: For our hierarchical pruning, we store data in three
different GPU arrays. Arrays marked with an asterisk are mutable
and thus double buffered. The immutable node array is the input
from which the two other arrays are constructed, and contains all
the smooth CSG tree data.

ement has an ancestor node index, a complementary flag, and a381

global index that references the immutable node array.382

Each world-space cell owns a slice of the mutable node ar-383

ray where its pruned tree is stored using post-order index-384

ing [GDW∗16]. The cell array stores the start and length of this385

slice for every cell. We index this array using Morton order to map386

the 3D cell coordinates to 1D, which ensures that cells sharing the387

same parent in the hierarchy have consecutive indices.388

Local & global state computation. The input nodes are stored us-389

ing post-order indexing. Hence, post-order and pre-order traversal390

are implemented with forward and backward iteration through the391

array of input nodes. We use per-thread arrays for the stack used in392

Procedure 1, and a pre-allocated temporary buffer in global mem-393

ory for all per-node temporary data: local state for the first traversal394

(2 bits per node); global state, inactive ancestors flag, updated an-395

cestor indices and node signs for the second traversal (19 bits per396

node).397

Writing the pruned tree. After computing the global state and398

updating ancestor and sign for every input node, we write out these399

results. Every thread increments a global atomic counter by the size400

of its pruned tree, computed during Procedure 2, to reserve a slice401

of the output mutable node array. Then the thread iterates through402

all the input nodes, checks whether they are globally active, and403

if so writes their global index, ancestor index and sign to the next404

unused location in the output slice. Since we want to write the out-405

put index of the ancestors and not their index in the input tree, we406

cache the output index of every active node in our temporary buffer407

during this traversal and translate the ancestor index before writing.408

5. Results409

We implemented our method in C++/Vulkan/GLSL in a standalone410

application (see the accompanying video). All models shown411

throughout this paper (Figures 1, 9, 10, 12) are represented by con-412

struction trees made of common SDF primitives and binary opera-413

tors. In particular, our implementation supports all exact and con-414

servative SDFs [Qui24a], as well as hard and smooth CSG oper-415

ators. Scenes were rendered using sphere tracing, propelled with416

our hierarchical pruning procedure (Sections 3.4, 3.5) and far-field417

culling (Section 3.6). Our method can accelerate arbitrary SDF418

queries and is not limited to primary ray tracing as we demon-419

strate using shadow rays and grid discretization. Statistics for ren-420

dering the models shown in this paper are reported in Table 1, for a421

1920× 1080 image resolution on a laptop RTX 4060 with 8GB of422

GPU memory. Results are given with pruning on a 4-level grid hier-423

archy with resolutions 43, 163, 643, and 2563 for all of our scenes.424

5.1. Efficiency425

Pruning and culling. We report in Table 1 the performance of426

pruning, and statistics about the number of active nodes in cells427

in Table 2. Our pruning algorithm significantly reduces the amount428

of active nodes, going as low as ≈ 1 active node per cell for many429

scenes when using far-field culling. Efficiency mostly depends on430

how primitives are positioned in space. For instance, the fluid scene431

is made of thousands of particles close in space, which makes prun-432

ing less efficient. The blending radius k (Equation 1) is also signifi-433

cant: since it impacts the range at which a primitive can be pruned,434

high blending radius have a negative effect on the runtime (Fig-435

ure 14). Nonetheless, our method is more robust to this issue than436

state-of-the-art methods (Figure 13). Finally, while the pruning pro-437

cedure only needs to be done once for static scenes, the algorithm438

is fast enough to be executed every frame for dynamic scenes.439

Runtime performance. As exemplified in Table 1 and Figure 12,440

our method enables faster evaluation of the SDF on complex441

scenes. In ray tracing contexts with a primary ray and shadow442

ray per pixel, speedups go as high as two orders of magnitude443

(City, Crowd) when compared to naive sphere tracing. Our far-444

field culling improves the tracing performance by up to a factor of445

2 (City, Gameboy, Camera), and our hierarchical pruning scheme446

significantly reduces the memory impact and runtime of the prun-447

ing procedure, allowing for larger scenes that would not be pos-448

sible otherwise. As we optimize the SDF evaluation in 3D space,449

our method is also applicable in contexts where the SDF needs to450

be discretized over a finite domain, as it is the case for meshing451

purposes.452

Handling of large scenes. Construction trees are a user-friendly453

paradigm to encode implicit surfaces, however their authoring ex-454

perience may quickly suffer from poor rendering performance as455

the scene complexity grows. By efficiently pruning both hard and456

smooth boolean operators, which are notoriously difficult to han-457

dle, our method scales well and can render 3D scenes featuring458

thousands of nodes in real time (Figure 1, 12, 13), where other459

SDF rendering methods are limited to a few dozens to hundreds460

of nodes, going as high as few thousands for 2D SDFs [Kee20].461

5.2. Comparison with other methods462

Below we compare our approach against the method from463

Keeter [Kee20] (referred to as parallel tape reduction), and also464

discuss object centric techniques.465

Object centric pruning. One classical approach for tree-based466

pruning is to compute a bounding volume (usually a box or sphere)467

around each node in the tree. These are then used to prune parts of468
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Figure 12: Real time rendering of scenes with varying complexity with our method with ambient occlusion, shadow rays, and anti-aliasing.

Ours No far-field culling No spatial hierarchy Baseline

Tp Ts Td Mp Ms Tp Ts Td Mp Ms Tp Ts Td Mp Ms Ts Td Ms

Camera (#N = 119) 0.84 1.47 (x34) 0.91 0.39 0.19 13.84 3.45 4.36 2.28 0.42 - - - 11.5* - 50.31 70.66 0
Car (#N = 117) 1.17 2.38 (x23) 1.0 0.46 0.2 4.09 3.32 2.57 1.01 0.32 - - - 11.3* - 56.14 69.07 0
Car Chase (#N = 560) 2.53 4.89 (x102) 1.05 0.5 0.2 10.31 8.65 4.4 1.75 0.44 - - - 52.8* - 501.95 334.87 0
Character (#N = 43) 1.02 2.79 (x8) 0.99 0.44 0.2 4.76 3.99 3.58 1.23 0.41 25.6 3.6 0.95 4.6 0.20 22.31 26.48 0
City (#N = 691) 2.52 5.17 (x150) 1.08 0.52 0.2 12.72 9.7 5.01 2.0 0.45 - - - 64.1* - 778.69 422.7 0
Console (#N = 61) 0.97 1.17 (x13) 0.97 0.44 0.2 3.92 1.85 2.56 1.0 0.32 - - - 6.1* - 15.83 36.77 0
Crowd (#N = 1989) 5.53 8.35 (x227) 1.02 0.54 0.2 - - - - - - - - 186* - 1821 1223 0
Fluid (#N = 27977) 125.54 78.52 (x-) 6.99 5.68 0.42 - - - - - - - - 2625* - × × 0
Gameboy (#N = 65) 0.72 2.02 (x15) 0.91 0.38 0.19 10.14 4.39 4.0 1.92 0.43 - - - 6.5* - 31.11 39.09 0
Molecule (#N = 1999) 8.9 6.97 (x86) 1.48 1.47 0.21 - - - - - - - - 188* - 601.36 841.65 0
Monument (#N = 6023) 14.29 15.15 (x629) 1.61 0.96 0.22 - - - - - - - - 565* - 9448 3604 0
Raccoon (#N = 53) 0.85 2.18 (x9) 0.96 0.41 0.2 3.59 3.03 2.45 0.94 0.31 31.9 2.8 0.95 5.5 0.19 20.64 33.01 0
Train station (#N = 119) 1.53 2.81 (x22) 1.12 0.51 0.21 6.94 4.65 3.73 1.38 0.38 - - - 11.5* - 63.9 72.41 0
Trees (#N = 369) 2.73 13.01 (x20) 1.24 0.64 0.21 - - - - - - - - 34.9* - 266.87 216.56 0

Table 1: Statistics for the different scenes shown throughout our paper with #N nodes, measured on a laptop RTX 4060 with 8GB of GPU
memory. We report the pruning time Tp, sphere tracing time Ts, discretization time over a 2563 grid Td , memory usage during pruningMp,
and memory usage during tracingMs. All timings are in milliseconds (ms) and memory usage is in gigabytes (GB). We report numbers for
our method with both spatial hierarchy and far-field culling, and also ablations without these additions, and compare against a naive SDF
evaluation baseline. For sphere tracing, we use one primary and one shadow ray over 1920× 1080 pixels. Empty cells marked with a dash
(−) correspond to tests that overflowed the maximum temporary buffer size (5.7GB), and empty cells marked with a cross (×) correspond
to tests where rendering or discretization did not finish after a few minutes. Cells reporting memory marked with a star (*) give only a
theoretical lower-bound memory usage that would be required for the pruning without spatial hierarchy.
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Figure 13: Render time comparison between our method and par-
allel tape reduction [Kee20], using a RTX 3090, with a 2048×2048
screen resolution, on a synthetic scene with a varying number of
spheres without smooth blending (left), and with smooth blending
(right). Since parallel tape reduction couples pruning and render-
ing, our timings combine pruning and sphere tracing.

the tree in certain regions of space. Some implicit model are well469

suited to this technique as they provides an integrated bounding470

volume hierarchy [WGG99]). While this is also theoretically pos-471

sible with SDFs, it quickly becomes impractical as smooth CSG472

operators require the bounding box to be extended by the blend-473

ing radius [Qui24b], which quickly leads to very large boxes that474

simply cannot be pruned. In contrast, our Lipschitz criteria is space475

centric rather than object centric, does not require nodes to com-476

pute a bounding box, and also guarantees distance exactness while477

being as efficient as possible with respect to the blending radius.478

Parallel tape reduction. Our approach is similar in spirit to479

Keeter [Kee20]: we aim at simplifying the SDF expression in cer-480

tain regions of space. The key difference is that we do not use in-481

terval arithmetic, but rather exploit the fact that all of our nodes are482

1-Lipschitz to bound their range of influence. Our approach com-483

pares favourably in terms of speed (see Figure 13, left and right)484

and handles widely used smooth boolean operators more efficiently485

(see Figure 13, right). It is also simpler to implement as primitives486

are treated as black boxes, whereas tape reduction relies on well-487

defined interval arithmetic queries for each node in the tree.488

6. Discussion489

6.1. Limitations & Future work490

Our method is restricted to primitives and operators that are 1-491

Lipschitz, meaning that ∥∇ f∥ ≤ 1 everywhere. In practice, this492

limitation is mitigated as any function f may be transformed into a493

lower-bound distance function by using f/K as the field function,494

with K a Lipschitz bound [Har96]. This induces that our method495

is compatible with all primitives and operators where a Lipschitz496

bound can be computed, which is the case for most primitives and497

operators used in implicit modeling.498

Our approach provides foundations to explore several directions499

in the future. First, while its performance already allows real-time500

editing of the underlying CSG tree investigating the partial up-501

date of our pruning structure would improve the editing experi-502

ence for very large scenes. Second, our dense space partition could503

be replaced by a sparse adaptive one, especially for scenes with504

significant variations in object scales. Third, while our hierarchi-505
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Figure 14: Impact of the blending radius k on pruning time using
a laptop RTX 4060, on a synthetic scene composed of a varying
number of spheres with unit random positions and radius r = 0.05.
Line thickness indicates standard deviations.

cal scheme scales efficiently memory-wise, we still need to pre-506

allocate a potentially large chunk of GPU memory at startup. A507

more efficient scheme could first compute the amount of memory508

required for the whole structure in a pre-pass.509

6.2. Conclusion510

We presented a real-time rendering method for signed distance511

fields encoded as construction trees of thousands of primitives and512

operators. Our hierarchical pruning algorithm, based on a Lipschitz513

criteria, greatly reduces the size of the tree near the surface while514

preserving exact distance values. Additionally, our far-field culling515

replaces entire sub trees with constants that remain valid lower dis-516

tance bounds further away from the object. Our method is concep-517

tually simple, non-invasive when compared to other approaches,518

and handles smooth CSG operators widely used in implicit model-519

ing.520
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Appendix A: A condition for Lipschitz pruning599

In order to prune binary operators, one needs find a lower bound on600

| f1− f2| for a region of space, where f1 and f2 are the operator’s601

SDFs arguments. As depicted in Figure 5, given a closed ball B602

with center p and radius R, a binary operator with blending radius603

k can be pruned over B if | f1(q)− f2(q)| ≥ k for all q ∈ B. Since604

the SDFs are 1-Lipschitz, this condition is met whenever | f1(p)−605

f2(p)| ≥ k+2R, because:606

| f1(q)− f2(q)|= | f1(q)− f1(p)+ f1(p)− f2(p)+ f2(p)− f2(q)|
≥ | f1(p)− f2(p)|︸ ︷︷ ︸

≥k+2R

−| f1(q)− f1(p)+ f2(p)− f2(q)|︸ ︷︷ ︸
≤(∥∇ f1∥+∥∇ f2∥)∥p−q∥≤2R

≥ k
(2)
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