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Figure 1: We introduce an efficient primitive pruning algorithm for CSG trees that encode Signed Distance Fields (SDFs). For a region of
space, we reduce binary operators to one of their operands, or completely replace sub trees with constant expression, which greatly reduces
the complexity of the SDF. We achieve speedups up to two orders of magnitude when compared to classical sphere tracing, for instance we
reach ×629 on this scene made of 6023 nodes.

Abstract
Rendering tree-based analytical Signed Distance Fields (SDFs) through sphere tracing often requires to evaluate many prim-
itives per tracing step, for many steps per pixel of the end image. This cost quickly becomes prohibitive as the number of
primitives that constitute the SDF grows. In this paper, we alleviate this cost by computing local pruned trees that are equiva-
lent to the full tree within their region of space while being much faster to evaluate. We introduce an efficient hierarchical tree
pruning method based on the Lipschitz property of SDFs, which is compatible with hard and smooth CSG operators. We pro-
pose a GPU implementation that enables real-time sphere tracing of complex SDFs composed of thousands of primitives with
dynamic animation. Our pruning technique provides significant speedups for SDF evaluation in general, which we demonstrate
on sphere tracing tasks but could also lead to significant improvement for SDF discretization or polygonization.

1. Introduction

Signed distance fields (SDFs) are a powerful surface representation
for modeling and animating shapes of arbitrary topology. As op-
posed to meshes, they naturally provide non-trivial modeling oper-
ators such as Boolean operations commonly used in Constructive
Solid Geometry (CSG), smooth blending and offset surfaces. They
also come in an incredibly compact format, as one only needs to
store the expression of the function representing the surface. The
ability to build complex shapes using SDFs makes them the rep-
resentation of choice for easy-to-use 3D modeling software, which
have seen a recent rise of popularity [Wom22, Mag22, Neo23].

More precisely, we consider 1-Lipschitz signed distance bounds
[Har96] which are implicit surfaces representing shapes as the 0-
level set of a scalar function f : R3 → R with the two following
properties:

• f (p) is positive if p is outside the shape, and negative if inside.
• The norm of its gradient is bounded by 1: ∥∇ f∥ ≤ 1

These properties imply that | f (p)| is a lower bound on the exact
distance from p to the surface. In this paper, we refer to functions
satisfying these constraints as SDFs for conciseness although it is
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a slight abuse of terminology. We refer the reader to Hart’s seminal
paper [Har96] for more details on SDFs and related concepts.

The implicit nature of SDFs makes their efficient rendering chal-
lenging. One can either resort to indirect polygonization, or direct
ray-tracing. Polygonization techniques first discretize the SDF over
a finite domain – usually a regular grid or an octree – and extract a
polygon mesh from this discretization. While these fit in traditional
graphics pipeline, they are not without issues: on top of possible
topological errors, sharp and detailed features are difficult to cap-
ture without a very fine grid, leading to a high memory footprint.

On the other hand, ray-tracing directly computes the intersection
between a camera ray and the isosurface. Sphere-tracing [Har96]
has been the go-to algorithm for the past three decades, thanks to
its simplicity and its embarrassingly parallel nature. However, it re-
mains computationally expensive, scaling linearly with the number
of pixels as well as with the SDF complexity. Several approaches
have been proposed to improve sphere tracing performance. These
include reducing the number of marching steps through heuristics
or local Lipschitz bound computation [KSK∗14, GGPP20, BV18,
AZ23], but at the cost of increasing single step computations, mit-
igating the resulting gain. Alternatively, reducing the complexity
of the function evaluation can be performed by pruning its expres-
sion, retaining only the instructions that contribute to the distance
value for a given region of space. However, existing algorithms
suffer from the significant overhead of an interval arithmetic inter-
preter [Kee20] or are limited to implicit functions with local sup-
port [FGW01] and thus not applicable to SDFs. We fill this gap
in the literature by providing a pruning algorithm that is tailored
to the SDF representation and exploits the 1-Lipschitz property to
conservatively prune the input tree without the overhead of interval
arithmetic, and achieves similar pruning efficiency. Our contribu-
tions are as follows:

1. A spatially-varying pruning algorithm that reduces the number
of primitives and operators evaluated at a given point in space,
compatible with CSG and smooth operators.

2. A hierarchical scheme for this pruning, compatible with GPU
implementation, that allows our method to scale to large scenes.

3. A far-field culling method that reduces subtrees to constant dis-
tances, which in turn provides even faster evaluation.

Our contributions are conceptually simple, easy to implement, and
allow to speedup the function evaluation in scenarios such as sphere
tracing and discretization, for SDFs scenes made of thousands of
primitives and operators.

2. Related Work

In this section, we review existing techniques for ray tracing im-
plicit surfaces, and particularly SDFs. They often come in two main
flavors: they can be either analytic, i.e. the mathematical expression
of the distance function is evaluated at runtime, or they can be dis-
crete, i.e. the function is represented by a finite set of samples, and
their corresponding values are interpolated at runtime to provide a
distance. Even though our method is developed for analytic SDFs,
we also briefly discuss discrete representations when relevant.

Sphere tracing and variants. Sphere tracing [Har96] is the stan-
dard algorithm to raytrace signed distance fields. The core idea is

to advance along the ray by the distance evaluated at the current
point, with the guarantee to not miss any intersection with the sur-
face thanks to the unbounding sphere property. A common issue
is that rays that get close to the shape require a significant num-
ber of steps to reach or discard the intersection (the grazing rays
problem). Several variants were created to reduce the number of
steps needed to compute the ray-surface intersection. Keinert et
al’s relaxed sphere tracing [KSK∗14] extends the step size by a
constant factor, using the fact that no intersection can be missed if
the empty spheres between two consecutive steps overlap. Bálint
and Valasek’s enhanced sphere tracing [BV18] is built on the same
idea, but rather than scaling the step size by a fixed factor, they com-
pute a local linear approximation of the SDF and use this approx-
imation to compute an optimal step size. Bàn and Valasek [BV23]
extend this approach by using exponential averaging of the slope.
Segment tracing [GGPP20] computes local Lipschitz bounds along
ray segments, which allows to take longer steps without back-
tracking. While the first two approaches can process black-box
SDFs, segment tracing require knowledge of the underlying Blob-
Tree [WGG99], and is limited to primitives and operators where
local Lipschitz bounds can be computed. Sphere tracing may also
be viewed as the process of bounding the distance function by two
affine functions with slopes equal to the (global or local) Lipschitz
constant. In this spirit, forward inclusion functions [AZ23] gener-
alize the standard Lipschitz bounds with asymmetric (lower and
upper) and higher-order bounding functions. These bounds can be
computed either by analyzing the CSG tree or using interval arith-
metic [Duf92].

Primitive pruning. A common representation for an implicit sur-
face is a construction tree or graph, where nodes are functions
describing simple geometric primitives or composition operators
such as CSG operators, smooth blending, or affine transformations.
The goal of pruning is to determine which nodes in the construc-
tion tree contribute to the distance value for a given input region.
Claybook [Aal18] evaluates the distance to every primitive at the
center of the region and checks if it is lower than the radius of
the region, with an additional safety margin for smooth blending
operators. Unfortunately this approach leads to incorrect results
when the blending radius grow beyond the safety margin. Pujol and
Chica [PC23] accelerate the computation of the distance to a trian-
gle mesh by precomputing an octree where every cell stores a list of
active triangles. Their method is limited to triangle meshes, and is
not usable in the context of hierarchical SDFs with arbitrary primi-
tives and smooth blending operations. Interval arithmetic is a tech-
nique that bounds the possible values of an expression by operating
on intervals rather than scalar values. It can be used to render gen-
eral implicit surfaces [Duf92], or in more specific contexts like an-
imated implicit surface rendering [Jaz23] or neural implicit geom-
etry processing [SJ22]. Keeter [Kee20] describes a GPU-friendly
hierarchical pruning algorithm for general implicit surfaces using
interval arithmetic. They translate the arithmetic expression of the
implicit function into a tape of instructions later interpreted on the
GPU. Then, for a given region they rely on interval arithmetic to de-
termine which clauses can be safely removed from the tape without
changing the result of the computation. This is done in a hierarchi-
cal manner: the large regions are split in smaller regions that use
the reduced tape of their parent as a starting point for their own
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Figure 2: Our method takes as input a smooth CSG tree that defines a SDF function and its associated surface (a). Upon any modification
of the SDF, which can happen in real-time, we compute a spatially-varying pruning of the tree (b). At runtime, this pruning allows fast
evaluations of the SDF, useful when sphere-tracing the surface or when discretizing the SDF into a dense grid (c).

culling. Dreams [Eva15] uses a hierarchical culling scheme specif-
ically tailored to SDFs, but their algorithm is limited to a linear
array of primitives and is not fully described. Zanni [Zan23] de-
scribes how to design compact operators for SDFs, which in turn
allows to prune them in screen-space and reduce computations.
However, the Lipschitz bound is not preserved, which may lead
to missing ray-surface intersections when rendering the SDF. In
contrast, our pruning algorithm preserves the Lipschitz property,
operates in the 3D space (which allows for optimizing secondary
rays), and guarantees that the SDF evaluates to the same distance
value after pruning. Alternatively, hierarchical trees with compact
support [WGG99], also called BlobTrees, have been widely stud-
ied over the years [SWSJ07,GLA00,FJW∗05,FGW01,GDW∗16],
and are similar to the smooth CSG SDFs that our work focuses on.
A key difference is that since the density field of primitives has a
compact support, it is straightforward to compute bounding boxes
for every node in a BlobTree. To our knowledge, all existing ap-
proaches to prune such structures are based on the computation of
these bounding boxes [WGG99, FGW01], which do not translate
to signed distance fields with global support that are widely used
in practice [JQ14]. Still, some ideas developed in the literature do
translate to our setting, such as efficient post-order traversal and
left-heavy stack optimization [GDW∗16] which can be applied to
smooth CSG SDFs.

3. Method

3.1. Overview

We aim at reducing the cost of a single evaluation of the signed dis-
tance function by pruning or even replacing parts of its construction
tree that are not relevant to a region of space. To that end, we de-
veloped two procedures: (i) a (hierarchical) pruning algorithm that
reduces the number of active nodes in a region of space, and (ii) a
far-field culling that replaces the whole tree with a constant expres-
sion when sufficiently far from the surface (Figure 2).

Our pruning algorithm (Sec. 3.4) relies on two important obser-

vations, namely (i) for a given point in space only a small subset
of nodes needs to be evaluated to get the final value, and (ii) this
subset tends to be coherent in space due to the inherent property of
the distance function in Euclidean space. For a region of space e.g.,
a grid cell, we compute the subset of nodes needed to be evaluated
for at least one point in the region – which we call active nodes
– and output a pruned tree that is equivalent to the full tree when
evaluated inside the input region (see Figure 3). This pruning is
executed in a hierarchical manner (Sec. 3.5), which makes it scale
gracefully to large scenes with thousands of nodes that would not
be possible otherwise due to memory constraints.

We also observe that further away from the surface, the math-
ematical expression may be reduced even more. This is the focus
of our far-field culling optimization (Sec. 3.6) that reduces trees
to constant expressions. While not exact, the reduced constant re-
mains a lower bound on the distance, and allows large sub trees to
be evaluated in constant-time which proves to be more efficient.

Our pruning and far-field optimization contributions are com-
plementary to each other. Pruning greatly reduces the number of
primitives evaluated when close to the surface, and far-field culling
reduces the construction tree to constant expressions further away
from the shape. Together, they makes the SDF evaluation signifi-
cantly faster in context such as sphere tracing, or when discretizing
the function for a later mesh extraction (see Section 5). Further-
more, the pruning and far-field culling are executed in parallel on
the GPU which enables us to render large dynamic scenes in real-
time by computing the pruned trees on-the-fly.

3.2. Smooth CSG Tree

We encode SDFs as binary trees, in the spirit of the Blob-
Tree [WGG99]. Leaf nodes represent primitives and compute
the signed distance to a potentially transformed geometric shape
(sphere, box, cone, etc.). Internal nodes are binary operators that
combine the distances evaluated from their subtrees (CSG opera-
tors and their smooth variants). The actual distance function is de-
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(a) Signed Distance Field (b) Per-cell pruned tree

Figure 3: Our primitive pruning procedure (Section 3.4) consumes
a smooth CSG tree that describes a Signed Distance Field made of
different primitives (spheres, boxes) and operators (CSG operators
and their smooth variants) (a), as well as a region of space (e.g.,
blue or green squares). The output is a per-cell pruned tree (b) that
evaluates to the same signed distance values within the region.

fined as the expression for the root of this smooth CSG tree. We
focus specifically on exact and conservative SDFs where the dis-
tance function f preserves the 1-Lipschitz property (∥∇ f∥ ≤ 1 ev-
erywhere [Har96]).

Figure 4: Tree annotation. The operators used in the input smooth
CSG Tree (a) need to provide our pruning algorithm with the sign
s and the potential complementary flags ca, cb, stored in children
(b).

3.3. Pruning Constraints

To enable effective pruning, we need an additional constraint on
each binary operator: it must reduce to one of its operands or its
complementary when they are sufficiently far apart. We show below
that this is met by classical hard CSG operators (namely union,
intersection, and difference) as well as their smooth counterparts.

Formally, for a binary operator OP we require a blending radius
k ∈ R, a sign s = ±1 and two complementary flags ca = ±1 and
cb = ±1 to define this constraint. The flag ca (resp. cb) specifies
whether the operator reduces to its operand A (resp. B) or to the
complementary −A (resp. −B). The sign s encodes whether the
comparison is ≤ or ≥ in our formal constraint:

if |a′−b′|> k, OP(a,b) =

{
a′ if s ·a′ ≤ s ·b′

b′ otherwise
(1)

Figure 5: An operator that combines operands A and B is marked
as skipped by Procedure 1 if the bounding sphere of the region
under consideration does not overlap with the points such that
|a− b| ≤ k (green area). In this example, the UNION operator is
skipped when pruning for region centered at p with radius R, but it
cannot be skipped for the region centered at p′. Shades of red are
the positive isolines of the signed distance to UNION(A,B), shades
of blue are the negative isolines of this same distance and dashed
lines are the positive isolines of |a−b|− k.

where a′ = ca · a is derived from the distance a returned by the
operand A by flipping its sign when OP may reduce to the comple-
mentary of A. Similarly, b′ = cb · b is derived from the distance b
returned by the operand B. The blending radius k represents the dis-
tance at which we can reduce the operator to one of its operands - its
value varies depending the underlying operator formula, as shown
below.

Smooth Blending operators. Without loss of generality, the bi-
nary operators that we use are the smooth CSG operators with a
user-specified blending radius k:

UNION(a,b,k) = min(a,b)−φ(|a−b|,k)
INTER(a,b,k) = max(a,b)+φ(|a−b|,k)

SUB(a,b,k) = max(a,−b)+φ(|a+b|,k)

where φ(d,k) is a blending kernel that vanishes to 0 as d approaches
k such that when k = 0, they correspond to hard CSG operators. In
practice, we use quadratic blending [DVOG04, Qui24b], namely
φ(d,k) = 1

4k max(k− d,0)2. These smooth CSG operators fulfill
constraint (1) since when φ(d,k) = 0 they can all be reduced to one
of their operands. For these operators, we use the following values
for ca, cb, and s:

OP ca cb s
UNION +1 +1 +1
INTER +1 +1 -1
SUB +1 -1 -1

To efficiently handle all smooth CSG operators ca (resp. cb) are
also stored as a sign cFlag in the child node A (resp. B) (Figure 4).
For our pruning procedure, we also consider a bounding box that
contains the scene to be provided as input.
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Figure 6: Our pruning algorithm consists in two traversals of the input smooth CSG tree. The first one evaluates the local state of a node
with respect to a given grid cell (a), the second reassigns node parents to prune inactive sub-trees and remove skipped nodes (b). The result
is a pruned tree that is equivalent to the input one for points of the grid cell under consideration. (c). Complementary flags are a compact
way to keep track of sub-trees whose sign must be inverted when skipping some operators.

3.4. Pruning algorithm

For complex scenes with hundreds of nodes or more, the smooth
CSG tree can grow quite large, which increases the cost of a single
SDF evaluation as it needs to traverse the whole tree. Our pruning
algorithm takes as input a region of space (a grid cell in practice),
computes the subset of active nodes needed to be evaluated for at
least one point in the region and outputs a pruned tree that is equiv-
alent to the full tree when evaluated inside the input region (see
Figure 3). Since points that are close to each other in space are
likely to share the same subset of contributing nodes, the set of ac-
tive nodes tends to shrink rapidly as the size of the region of interest
diminishes.

Overview. Our pruning procedure consists in two consecutive
traversals of the original smooth CSG tree. The first one evaluates
a local state of each node, relative to the input region. The second
one deduces the global contribution of each node and rewires par-
enting so as to prune unused sub-trees and drop operators that can
be skipped, effectively building a pruned tree valid for the whole
region (Figure 7).

Traversal #1. We first do a post-order traversal during which we
compute the local state of every node (Figure 6.a):

• A node is inactive if it does not contribute to the value of its par-
ent node: the whole sub-tree rooted at this node can be pruned.

• A node is skipped if it contributes to the value of its parent, but
can be replaced by one of its children or its complementary. For
example, in the expression min(min(a,b),c), if a < b then the
inner min can be replaced by its left operand a.

• A node is active if it contributes to the value of its parent and
cannot be replaced by one of its children, or has no children.

Figure 7: Simplified overview of our hierarchical pruning algo-
rithm in 2D. Starting from the global smooth CSG tree, our prun-
ing algorithm (right) computes pruned trees that are equivalent in
distance evaluation but with lower complexity. The process is iter-
ative and leads to simpler pruned trees that are stored per-cell in a
hierarchical manner (left).

We take advantage of the fact that all the expressions are 1-
Lipschitz: we detect binary operators that can be safely skipped
using a single evaluation of their operands. Considering an operator
with child expressions f1 and f2, and a region of radius R centered
on a point p, if | f1(p)− f2(p)| ≥ k+2R it follows that | f1− f2| ≥ k
for all points in this region (see Appendix A). This implies that we
can replace the operator with one of its children due to Equation 1
(see Figure 5). In this case we mark the operator node as skipped,
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and depending on the sign of f1(p)− f2(p) we mark one of the
children as inactive (see Procedure 1).

Our Lipschitz constraint allows to estimate bounds of f1 − f2
on a region using a single evaluation. While range arithmetic is
a more generic yet more costly approach to obtain SDF bounds
on regions [SJ22], we show in Figure 8 that in practice, Lips-
chitz bounds, when available, have similar pruning capabilities than
those obtained with affine or interval arithmetic.

Traversal #2. The role of the second traversal (Figure 6.b) is to
determine the global state of the nodes. While the local state only
tells whether a node contributes to the value of its direct parent,
the global state tells whether the node contributes to the full tree
evaluation. A node contributes to this final value if it is active and
there are no inactive nodes among its ancestors.

We compute the global state for every node through a pre-order
traversal of the tree (see Procedure 2). We set a node as globally ac-
tive if there is no locally inactive node among its ancestors. During
this traversal we also update the parent (line 11) – the new parent of
a node is its closest ancestor that is not skipped – and we propagate
the complementary flag of skipped nodes to their children (line 12).
Finally, we also count the number of globally active nodes (i.e the
size of the pruned tree) during this traversal (line 15).

3.5. Spatial hierarchy

Applying this procedure directly for all cells of a dense grid leads
to two different issues in practice. First, the size of each output
pruned tree is not known in advance. In the worst case where every
cell outputs the full input tree, memory allocation would not scale
up for large scenes and dense grids. Second, evaluating the full tree
for each cell of a dense grid would be time-consuming. Indeed, the
complexity of such an approach would scale linearly not only with
the number of cells in the grid, but also with the tree size.

We address these two issues using a spatial hierarchy: starting
from a coarse grid, we iteratively subdivide each cell and apply our
pruning procedure to compute a finer grid until a target resolution
is reached. More specifically, the input of the pruning procedure
for a given cell is the pruned tree computed for the parent cell in
the previous grid, as seen in Figure 7. In practice, this approach
reduces the memory footprint and speedups computations. Indeed,
at each step the pruned tree becomes smaller, allowing less mem-
ory to be allocated at the next iteration, and faster computing of the
next iteration as opposed to using the full tree. The pruning effec-
tiveness increases with the hierarchy levels resolution as illustrated
in Figure 9.

Although we use a regular grid in our implementation, any hi-
erarchical structure may be used instead (octrees, kd trees, etc.).
In addition to its simplicity, the regular grid also provides efficient
random access, which is suited for sphere tracing or any applica-
tion that require parallel SDF queries on the GPU. All in all, our
hierarchical pruning procedure is fast enough to be useful in con-
texts where the scene is modified (i.e. a parameter of a primitive is
changed, new sub trees are added or deleted, etc.), as discussed in
Section 5.

Procedure 1: ComputeLocalState(nodes, p, R)
Input :
• nodes: array of nodes
• p: cell center
• R: cell radius
Output: Local state of the nodes relative to the cell centered

at p with radius R.

1 stack←{} // Entry: (distance, node idx)
2 foreach i ∈ PostOrderTraversal(nodes) do
3 n← nodes[i]
4 if IsLeaf(n) then
5 n.state← ACTIVE
6 d← EvalPrimitive(p, n.primData)
7 else
8 (b′, right)← stack.pop()
9 (a′, left)← stack.pop()

10 {OP,k,s,ca,cb}← n.blendData // see (1)

11 if |a′−b′|> k+2R then
12 if s ·a′ ≤ s ·b′ then
13 nodes[right].state← INACTIVE
14 else
15 nodes[left].state← INACTIVE
16 end
17 n.state← SKIPPED
18 else
19 n.state← ACTIVE
20 end
21 d← OP(ca ·a′, cb ·b′, k)
22 end
23 stack.push((n.cFlag · d, i))
24 end

3.6. Far-field culling

In order to further speed up tasks that can operate on SDFs while
being conservative rather than exact, we optimize cells that are far
away from the 0-isosurface, a.k.a. the far-field. We take inspira-
tion from the narrow-band optimization commonly used in dis-
crete SDF rendering [Eva15, Aal18, Söd21, SEAM22] to replace
trees in far-field cells by an approximate tree made of a single con-
stant node, whose value is given by the heuristic described below.
Although this approximation is not differentiable nor continuous,
it is guaranteed to give a lower-bound distance field that shares the
same 0-isosurface as the input SDF, and can thus be safely used for
sphere-tracing or contouring tasks (see Table 1).

Conservative heuristic. After the first traversal (Procedure 1), we
check whether the SDF evaluated at the cell center d = f (p) is
greater than C · R, where R is the cell radius and C is a constant
factor that controls the size of the near-field. When |d| > C · R,
the cell is considered far and its tree is replaced with the constant
sign(d) · (|d|−R). It is important that C > 1, to assert that the cell
is surface free, which ensures that the approximate SDF remains
conservative. When C gets larger, the narrow band in which we ex-
actly preserve the input SDF gets thicker. As such, less cells are
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Procedure 2: ComputeGlobalState(nodes)
Input:
• nodes: array of nodes with their local state
Output:
• A boolean flag for every node (activeGlobal) set to TRUE if the

node is part of the pruned tree.
• The number of globally active nodes.

1 numActiveGlobal← 0;
2 foreach i ∈ PreOrderTraversal(nodes) do
3 n← nodes[i];
4 if n.state = INACTIVE then
5 n.activeGlobal← FALSE;
6 n.inactiveAncestors← TRUE;
7 else
8 n.inactiveAncestors← n.parent.inactiveAncestors;
9 n.activeGlobal← n.state = ACTIVE and not

n.inactiveAncestors;
10 if n.parent.state = SKIPPED then
11 n.parent← n.parent.parent;
12 n.cFlag← n.cFlag × n.parent.cFlag;
13 end
14 if n.activeGlobal then
15 numActiveGlobal← numActiveGlobal + 1;
16 end
17 end
18 end

Figure 8: Pruning ratio. Amount of pruned primitives on a 2D test
scene (a), computing the bounds of f1− f2 for each cell of a reg-
ular grid and each binary operator using: our Lipschitz constraint
(b), affine arithmetic (c), and interval arithmetic (d). Our method
leads to a slightly better pruning ratio and only requires a single
evaluation of the SDF, while others are significantly more invasive.

replaced by a single node, but the ones that get replaced contain a
larger minimal constant as | |d|−R|> (C−1) ·R.

When doing sphere tracing, a value of C too close to 1 leads to
small step sizes which results in poor performance. On the con-
trary, when C is too large, the condition |d| > C ·R is never met
and thus none of the cell is deemed far. In practice, we use C = 2,
which guarantees that the tracing takes at most 2 steps to cross a
far-field cell while keeping the size of the near-field small enough
to significantly improve performance.

Benefits. This far-field culling has a good synergy with our prun-
ing algorithm. Indeed, many regions that have a low pruning po-
tential occur in the far-field, when multiple surfaces are equally far

Figure 9: Pruning ratio shown as a heat-map on the Raccoon scene
surface (a), for three different levels of our hierarchy with respec-
tive grid resolutions of 163 (b), 643 (c), and 2563 (d).

Near field

Pruning ratio

100%50%

Figure 10: Near field and pruning ratio for a 2D slice. For all cell
in the far field (i.e. outside the near field), we replace its tree with a
single constant value. This drastically reduces the SDF complexity
in regions of space with low pruning capabilities, typically far from
the surface, while preserving a lower-bound on the distance.

from the cell. Figure 10 shows that many of these low pruning ra-
tio regions fall out of the near-field, allowing our far-field culling
to simplify their SDF and thus avoid a lot of costly computation
both during the second traversal of the pruning and during the final
evaluation of the SDF.

4. GPU implementation

We implement our algorithm using compute shaders, with one dis-
patch per level of the hierarchy. Starting from the coarser level, we
iteratively perform a single dispatch to compute the next level of
our grid hierarchy. In each dispatch, we spawn one thread per tar-
get grid cell: every thread computes and writes the pruned tree of
its cell, given the pruned tree of its parent cell from the previous
level. Similarly to [Kee20] we use a 4× 4× 4 subdivision for the
hierarchical grid, which ensures that all threads in a warp have the
same parent cell to eliminate divergence.

Data representation. At each iteration, each cell of the grid stores
a tree of variable size. We then represent a grid as three arrays,
namely the cell array, the mutable node array and the immutable
node array (see Figure 11). The cell and mutable node arrays are
double-buffered: one copy is read, from a coarser level, while the
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Mutable node array

Cell array*

*

Immutable node array

Cell Grid CSG Tree

Figure 11: For our hierarchical pruning, we store data in three
different GPU arrays. Arrays marked with an asterisk are mutable
and thus double buffered. The immutable node array is the input
from which the two other arrays are constructed, and contains all
the smooth CSG tree data.

other is written, to a finer level. Arrays are switched after each dis-
patch.

The immutable node array is the input of our system, and con-
tains all data related to the construction tree of the SDF: the prim-
itives and binary operators data. This array is not affected by the
pruning, hence stored once without needing duplication. We store
a bit for every node to indicate whether it is a primitive or a binary
operator. A primitive is composed of a base shape type and shape
parameters, modifiers (repetition, offset, ...) and a transformation
matrix. A binary operator contains the operator type (UNION, IN-
TER, SUB) and blending radius k. The sign s and complementary
flags ca,cb can be deduced from the operator type.

The mutable node array represents the data modified by the prun-
ing, and thus needs to be stored separately for all cells. Each ele-
ment has an ancestor node index, a complementary flag cFlag,
and a global index that references the immutable node array.

Each world-space cell owns a slice of the mutable node ar-
ray where its pruned tree is stored using post-order index-
ing [GDW∗16]. The cell array stores the start and length of this
slice for every cell. We index this array using Morton order to map
the 3D cell coordinates to 1D, which ensures that cells sharing the
same parent in the hierarchy have consecutive indices.

Local & global state computation. The input nodes are stored us-
ing post-order indexing. Hence, post-order and pre-order traversal
are implemented with forward and backward iteration through the
array of input nodes. We use per-thread arrays for the stack used in
Procedure 1, and a pre-allocated temporary buffer in global mem-
ory for all per-node temporary data: local state for the first traversal
(2 bits per node); global state, inactive ancestors flag, updated an-
cestor indices and node signs for the second traversal (19 bits per
node).

Writing the pruned tree. After computing the global state and
updating ancestor and sign for every input node, we write out these
results. Every thread increments a global atomic counter by the size
of its pruned tree, computed during Procedure 2, to reserve a slice
of the output mutable node array. Then the thread iterates through
all the input nodes, checks whether they are globally active, and
if so writes their global index, ancestor index and sign to the next

unused location in the output slice. Since we want to write the out-
put index of the ancestors and not their index in the input tree, we
cache the output index of every active node in our temporary buffer
during this traversal and translate the ancestor index before writing.

Transform pre-processing Our data structures assume that only
primitives have associated affine transformations while internal
nodes of the CSG tree do not. If the input tree does not have this
property, we compose the transform matrices down to the leaves as
a cheap pre-processing step before pruning and rendering.

5. Results

We implemented our method in C++/Vulkan/GLSL in a standalone
application (see the accompanying video). All models shown
throughout this paper (Figures 1, 9, 10, 12) are represented by con-
struction trees made of common SDF primitives and binary opera-
tors. In particular, our implementation supports all exact and con-
servative SDFs [Qui24a], as well as hard and smooth CSG oper-
ators. Scenes were rendered using sphere tracing, propelled with
our hierarchical pruning procedure (Sections 3.4, 3.5) and far-field
culling (Section 3.6). Our method can accelerate arbitrary SDF
queries and is not limited to primary ray tracing as we demon-
strate using shadow rays and grid discretization. Statistics for ren-
dering the models shown in this paper are reported in Table 1, for a
1920× 1080 image resolution on a laptop RTX 4060 with 8GB of
GPU memory. Results are given with pruning on a 4-level grid hier-
archy with resolutions 43, 163, 643, and 2563 for all of our scenes.

5.1. Efficiency

Pruning and culling. We report in Table 1 the performance of
pruning, and statistics about the number of active nodes in cells
in Table 2. Our pruning algorithm significantly reduces the amount
of active nodes, going as low as ≈ 1 active node per cell for many
scenes when using far-field culling. Efficiency mostly depends on
how primitives are positioned in space. For instance, the fluid scene
is made of thousands of particles close in space, which makes prun-
ing less efficient. The blending radius k (Equation 1) is also signifi-
cant: since it impacts the range at which a primitive can be pruned,
high blending radius have a negative effect on the runtime (Fig-
ure 14). Nonetheless, our method is more robust to this issue than
state-of-the-art methods (Figure 13). Finally, while the pruning pro-
cedure only needs to be done once for static scenes, the algorithm
is fast enough to be executed every frame for dynamic scenes.

SDF evaluation performance. As exemplified in Table 1 and Fig-
ure 12, our method enables faster evaluation of the SDF on com-
plex scenes. In ray tracing contexts with a primary ray and shadow
ray per pixel, speedups go as high as two orders of magnitude
(City, Crowd) when compared to naive sphere tracing. Our far-
field culling improves the tracing performance by up to a factor of
2 (City, Gameboy, Camera), and our hierarchical pruning scheme
significantly reduces the memory impact and runtime of the prun-
ing procedure, allowing for larger scenes that would not be pos-
sible otherwise. As we optimize the SDF evaluation in 3D space,
our method is also applicable in contexts where the SDF needs to
be discretized over a finite domain, as it is the case for meshing
purposes.
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Figure 12: Real time rendering of scenes with varying complexity with our method with ambient occlusion, shadow rays, and anti-aliasing.

Ours No far-field culling No spatial hierarchy Baseline

Tp Ts Td Mp Ms Tp Ts Td Mp Ms Tp Ts Td Mp Ms Ts Td Ms

Camera (#N = 119) 0.84 1.47 (x34) 0.91 0.39 0.19 13.84 3.45 4.36 2.28 0.42 - - - 11.5* - 50.31 70.66 0
Car (#N = 117) 1.17 2.38 (x23) 1.0 0.46 0.2 4.09 3.32 2.57 1.01 0.32 - - - 11.3* - 56.14 69.07 0
Car Chase (#N = 560) 2.53 4.89 (x102) 1.05 0.5 0.2 10.31 8.65 4.4 1.75 0.44 - - - 52.8* - 501.95 334.87 0
Character (#N = 43) 1.02 2.79 (x8) 0.99 0.44 0.2 4.76 3.99 3.58 1.23 0.41 25.6 3.6 0.95 4.6 0.20 22.31 26.48 0
City (#N = 691) 2.52 5.17 (x150) 1.08 0.52 0.2 12.72 9.7 5.01 2.0 0.45 - - - 64.1* - 778.69 422.7 0
Console (#N = 61) 0.97 1.17 (x13) 0.97 0.44 0.2 3.92 1.85 2.56 1.0 0.32 - - - 6.1* - 15.83 36.77 0
Crowd (#N = 1989) 5.53 8.35 (x227) 1.02 0.54 0.2 - - - - - - - - 186* - 1821 1223 0
Fluid (#N = 27977) 125.54 78.52 (x-) 6.99 5.68 0.42 - - - - - - - - 2625* - × × 0
Gameboy (#N = 65) 0.72 2.02 (x15) 0.91 0.38 0.19 10.14 4.39 4.0 1.92 0.43 - - - 6.5* - 31.11 39.09 0
Molecule (#N = 1999) 8.9 6.97 (x86) 1.48 1.47 0.21 - - - - - - - - 188* - 601.36 841.65 0
Monument (#N = 6023) 14.29 15.15 (x629) 1.61 0.96 0.22 - - - - - - - - 565* - 9448 3604 0
Raccoon (#N = 53) 0.85 2.18 (x9) 0.96 0.41 0.2 3.59 3.03 2.45 0.94 0.31 31.9 2.8 0.95 5.5 0.19 20.64 33.01 0
Train station (#N = 119) 1.53 2.81 (x22) 1.12 0.51 0.21 6.94 4.65 3.73 1.38 0.38 - - - 11.5* - 63.9 72.41 0
Trees (#N = 369) 2.73 13.01 (x20) 1.24 0.64 0.21 - - - - - - - - 34.9* - 266.87 216.56 0

Table 1: Statistics for the different scenes shown throughout our paper with #N nodes, measured on a laptop RTX 4060 with 8GB of GPU
memory. We report the pruning time Tp, sphere tracing time Ts, discretization time over a 2563 grid Td , memory usage during pruningMp,
and memory usage during tracingMs. All timings are in milliseconds (ms) and memory usage is in gigabytes (GB). We report numbers for
our method with both spatial hierarchy and far-field culling, and also ablations without these additions, and compare against a naive SDF
evaluation baseline. For sphere tracing, we use one primary and one shadow ray over 1920× 1080 pixels. Empty cells marked with a dash
(−) correspond to tests that overflowed the maximum temporary buffer size (5.7GB), and empty cells marked with a cross (×) correspond
to tests where rendering or discretization did not finish after a few minutes. Cells reporting memory marked with a star (*) give only a
theoretical lower-bound memory usage that would be required for the pruning without spatial hierarchy.
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Figure 13: Render time comparison between our method and par-
allel tape reduction [Kee20], using a RTX 3090, with a 2048×2048
screen resolution, on a synthetic scene with a varying number of
spheres without smooth blending (left), and with smooth blending
(right). Since parallel tape reduction couples pruning and render-
ing, our timings combine pruning and sphere tracing.

Handling of large scenes. Construction trees are a user-friendly
paradigm to encode implicit surfaces, however their authoring ex-
perience may quickly suffer from poor rendering performance as
the scene complexity grows. By efficiently pruning both hard and
smooth boolean operators, which are notoriously difficult to han-
dle, our method scales well and can render 3D scenes featuring
thousands of nodes in real time (Figure 1, 12, 13), where other
SDF rendering methods are limited to a few dozens to hundreds
of nodes, going as high as few thousands for 2D SDFs [Kee20].

5.2. Comparison with other methods

Below we compare our approach against the method from
Keeter [Kee20] (referred to as parallel tape reduction), and also
discuss object centric techniques.

Object centric pruning. One classical approach for tree-based
pruning is to compute a bounding volume (usually a box or sphere)
around each node in the tree. These are then used to prune parts of
the tree in certain regions of space. Some implicit model are well
suited to this technique as they provides an integrated bounding
volume hierarchy [WGG99]). While this is also theoretically pos-
sible with SDFs, it quickly becomes impractical as smooth CSG
operators require the bounding box to be extended by the blend-
ing radius [Qui24b], which quickly leads to very large boxes that
simply cannot be pruned. In contrast, our Lipschitz criteria is space
centric rather than object centric, does not require nodes to com-
pute a bounding box, and also guarantees distance exactness while
being as efficient as possible with respect to the blending radius.

Parallel tape reduction. Our approach is similar in spirit to
Keeter [Kee20]: we aim at simplifying the SDF expression in cer-
tain regions of space. The key difference is that we do not use in-
terval arithmetic, but rather exploit the fact that all of our nodes are
1-Lipschitz to bound their range of influence. Our approach com-
pares favourably in terms of speed (see Figure 13, left and right)
and handles widely used smooth boolean operators more efficiently
(see Figure 13, right). It is also simpler to implement as primitives
are treated as black boxes, whereas tape reduction relies on well-
defined interval arithmetic queries for each node in the tree.
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Figure 14: Impact of the blending radius k on pruning time using
a laptop RTX 4060, on a synthetic scene composed of a varying
number of spheres with unit random positions and radius r = 0.05.
Line thickness indicates standard deviations.

6. Discussion

6.1. Limitations & Future work

Our method is restricted to primitives and operators that are 1-
Lipschitz, meaning that ∥∇ f∥ ≤ 1 everywhere. In practice, this
limitation is mitigated as any function f may be transformed into a
lower-bound distance function by using f/K as the field function,
with K a Lipschitz bound [Har96]. This induces that our method
is compatible with all primitives and operators where a Lipschitz
bound can be computed, which is the case for most primitives and
operators used in implicit modeling.

Our approach provides foundations to explore several directions
in the future. First, while performance already allows real-time
editing of the underlying CSG tree investigating the partial update
of our pruning structure would improve editing experience for very
large scenes. Second, our dense space partition could be replaced
by a sparse adaptive one, especially for scenes with significant vari-
ations in object scales. Third, we could apply our algorithm to more
exotic binary operators [KKG∗15] which fit well within our frame-
work. Furthermore, extending our pruning to more complex opera-
tors (e.g: sweeps) is an interesting avenue for future research.

6.2. Conclusion

We presented a real-time rendering method for signed distance
fields encoded as construction trees of thousands of primitives and
operators. Our hierarchical pruning algorithm, based on a Lipschitz
criteria, greatly reduces the size of the tree near the surface while
preserving exact distance values. Additionally, our far-field culling
replaces entire sub trees with constants that remain valid lower dis-
tance bounds further away from the object. Our method is concep-
tually simple, non-invasive compared to other approaches, and han-
dles smooth CSG operators widely used in implicit modeling.
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Ours No far-field culling Baseline

Avg ± std. dev. Max Avg ± std. dev. Max #N

Camera 1.0±0.01 7.0 2.36±2.93 15.0 119
Car 1.03±0.05 6.0 1.51±0.5 8.0 117
Car Chase 1.06±0.15 33.0 2.52±3.68 46.0 560
Character 1.03±0.06 8.0 2.27±1.39 8.0 43
City 1.05±0.14 14.0 2.56±2.82 24.0 691
Console 1.02±0.02 5.0 1.56±0.89 11.0 61
Crowd 1.03±0.17 17.0 - - 1989
Fluid 2.83±776.07 1202.0 - - 27 977
Gameboy 1.0±0.0 9.0 2.44±1.75 15.0 65
Molecule 1.12±0.98 62.0 - - 1999
Monument 1.17±0.81 45.0 - - 6023
Raccoon 1.01±0.02 8.0 1.43±0.87 10.0 53
Train station 1.05±0.11 10.0 1.98±1.99 16.0 119
Trees 1.1±0.97 36.0 - - 369

Table 2: Statistics on active nodes per grid cell using our method with and without far-field culling, against the baseline where all nodes are
considered active. When enabled, the average number of active nodes is close to 1 in many scenes, allowing efficient SDF evaluation.
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Appendix A: A condition for Lipschitz pruning

In order to prune binary operators, one needs to find a lower bound
on | f1− f2| for a region of space, where f1 and f2 are the operator’s
SDFs arguments. As depicted in Figure 5, given a closed ball B
with center p and radius R, a binary operator with blending radius
k can be pruned over B if | f1(q)− f2(q)| ≥ k for all q ∈ B. Since
the SDFs are 1-Lipschitz, this condition is met whenever | f1(p)−
f2(p)| ≥ k+2R, because:

| f1(q)− f2(q)|= | f1(q)− f1(p)+ f1(p)− f2(p)+ f2(p)− f2(q)|
≥ | f1(p)− f2(p)|︸ ︷︷ ︸

≥k+2R

−| f1(q)− f1(p)+ f2(p)− f2(q)|︸ ︷︷ ︸
≤(∥∇ f1∥+∥∇ f2∥)∥p−q∥≤2R

≥ k
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