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Abstract
We propose a novel approach for constructing wide bounding volume hierarchies on the GPU by integrating a simple
bottom-up collapsing procedure within an existing binary bottom-up BVH builder. Our approach directly constructs a wide
BVH without traversing a temporary binary BVH as done by previous approaches and achieves 1.4− 1.6× lower build times.
We demonstrate the ability of our algorithm to output compressed wide BVHs using existing compressed representations. We
analyze the impact of our method on software raytracing performance and show that it reduces the overall frame time on
complex dynamic scenes where rebuilding the BVH every frame is the limiting factor on rendering performance.

CCS Concepts
• Computing methodologies → Ray tracing; Massively parallel algorithms;

1. Introduction

The bounding volume hierarchy (BVH) is a widespread accelera-
tion structure that enables raytracing queries to scale efficiently to
large scenes. While the cost of constructing a BVH can be amor-
tized over many rays for static scenes, for real-time raytracing of
dynamic scenes the construction time is often as important as the
tracing time for overall performance. This led to the development
of efficient BVH construction algorithms which can take advan-
tage of the GPU’s massive parallelism for improved performance.
However the existing literature for GPU algorithms focuses on con-
structing binary BVHs while the current state-of-the-art for soft-
ware and hardware raytracing is the wide BVH [YKL17,BMB∗24]:
having more than two children per node results in shallower hier-
archies thus lowering the latency of tree traversal, and allows for
storing the sibling bounding boxes using a compressed representa-
tion to reduce the memory footprint. Several CPU algorithms for
wide BVH construction have been published, but this remains a
blind spot in the GPU literature with only a single published algo-
rithm [BMB∗24] to the best of our knowledge.

In this paper, we propose a fast GPU algorithm for wide BVH
construction. The key idea of our method is to use a bottom-up
collapsing procedure which allows us to fuse this collapsing step
with a bottom-up binary BVH builder such as H-PLOC [BMB∗24].
This fused collapsing procedure consistently outperforms state-of-
the-art GPU collapsing algorithms, and leads to lower frame time
when tracing few rays per pixel.

Our contributions are :

• a collapsing procedure which transforms a binary BVH into a
wide BVH in a bottom-up manner,

• a fused implementation of this procedure within H-PLOC that
does not require traversing a binary BVH.

2. Related Work

Binary BVH builders The problem of efficiently building a high-
quality BVH has received a lot of attention from the graphics com-
munity. The surface area heuristic (SAH) is the most widely-used
BVH quality metric as it is easy to compute and to optimize while
being well-correlated with ray-tracing performance. On CPUs the
top-down binned SAH builder introduced by Wald [Wal07] is
the de-facto standard algorithm thanks to its speed and high-
quality results. On GPUs the introduction of the LBVH algo-
rithm [LGS∗09, KA13, Ape14] was a major improvement over the
previous state-of-the-art as it reduced the problem of BVH con-
struction to integer sorting which admits efficient parallel algo-
rithms [SJ17, AM22]. Later works focused on alleviating the poor
quality of the resulting tree using a higher-quality builder for the
first levels of the tree [PL10], or using a post-process pass on
the BVH [KA13, DP15]. Meister and Bittner introduced the Paral-
lel Locally-Ordered Clustering (PLOC) algorithm [MB17] which
iteratively merges clusters of primitives and accelerates nearest-
neighbor computation by restricting the search to a small set of
candidates. This set of candidates is defined as a 1D neighborhood
in the Morton-sorted array of clusters. This algorithm produces
high-quality hierarchies while outperforming previous high-quality
BVH builders and exploits the full parallelism of current GPUs.
Benthin et al have improved the efficiency of the algorithm while
keeping the same core loop: PLOC++ [BDTD22] proposes sev-
eral optimizations such as splitting the primitives array into chunks
that are processed independently by a thread group to reduce the
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Figure 1: Our wide BVH construction algorithm is divided in three steps: first we integrate a bottom-up collapsing algorithm within an
existing binary bottom-up BVH builder, allowing us to directly compute the topology of our wide BVH without additional traversal. Then
we assign indices so that sibling nodes and triangles are numbered consecutively, and finally we write the wide BVH using a compressed
representation.

number of kernel launches, and halving the number of distance
computations using its commutative property. H-PLOC [BMB∗24]
builds the BVH in a single kernel launch: threads grow a set of
input clusters using a bottom-up traversal of the LBVH hierarchy
until the number of clusters exceeds a threshold, then all threads
within the warp cooperate to build a subtree from these clusters
using PLOC and resume their traversal. While top-down builders
tend to produce hierarchies with higher raytracing throughput com-
pared to bottom-up approaches such as PLOC, they are signifi-
cantly harder to parallelize and existing top-down GPU algorithms
have significantly lower build performance compared to state-of-
the-art bottom-up builders [TDDB23].

Wide BVH construction There are two approaches to wide BVH
construction: either build a wide BVH directly, or build a bi-
nary BVH first and convert it into a wide BVH as a second step.
In the first category, Wald et al. [WBB08] propose to adapt the
widespread top-down binned SAH builder by repeatedly splitting
the children of a node until it is filled. The same paper also de-
scribes a collapsing algorithm to convert a binary BVH into a
wide BVH [WBB08] using three operations: merging an interior
node into its parent, merging two leaf nodes together and merg-
ing two interior nodes together. Ernst and Greiner [EG08] as well
as Dammertz et al. [DHK08] build a K-wide BVH by keeping ev-
ery k-th level of the binary BVH, where k = log2 K. Pinto [Pin10]
and Ylitie et al. [YKL17] use a dynamic programming approach to
compute the SAH-optimal wide BVH from a binary BVH.

Wide BVHs on the GPU On GPUs, Guthe [Gut14] found that
tracing a binary hierarchy was latency-bound on their hardware
and that using a 4-wide BVH increases tracing performance. Yl-
itie et al. [YKL17] show that their compressed wide BVH consis-
tently outperforms previous works for software raytracing queries.
By quantizing the coordinates of child bounding boxes to a single
byte they reduce the size of an 8-wide node to 80 bytes. They also
introduce a compressed stack which reduces costly global mem-
ory accesses during traversal, along with other optimizations to re-
duce thread divergence. Lier et al. [LSS18] take inspiration from
the SIMD traversal algorithms used on CPUs and distribute the

child bounding boxes of a node over multiple lanes so they can
be intersected in parallel. Vaidyanathan et al. [VWB19] general-
ize the binary restart trail of Laine [Lai10] to wide BVHs, lead-
ing to reduced stack usage with a simple traversal algorithm that
is suitable for hardware implementation. While the current state-
of-the-art structure for GPU raytracing is the wide BVH, there has
been surprisingly little research on building these hierarchies on
the GPU. To our knowledge the only published algorithm was in-
troduced by Benthin et al [BMB∗24]: their algorithm traverses the
input binary BVH top-down and repeatedly fills all slots of a wide
node by replacing the child with largest area by grand-children,
similarly to Wald [WBB08].

While converting a binary BVH to a wide BVH allows us to
reuse existing build algorithms, the collapsing step is expensive as
it must traverse the binary BVH which will then be discarded. In
practice this step is often more expensive than the binary hierarchy
construction with a fast build algorithm [BMB∗24, MKVH24]. To
alleviate this issue, we propose a wide BVH construction algorithm
that avoids this additional traversal by fusing a simple collapsing
procedure with an existing high-performance binary BVH builder
such as H-PLOC.

3. Fused bottom-up collapsing

In this section we present our wide BVH construction algorithm,
which takes as input a sorted list of triangles and produces two
outputs: the first is a compressed wide BVH, and the second is a
permutation of triangle IDs such that all triangles referenced by
a node have consecutive indices. The algorithm consists of three
stages, each implemented with a separate kernel launch (Figure 1):

• First, fused collapsing outputs both an array of clusters and the
topology of our wide BVH (sections 3.1,3.2). We begin by de-
scribing a bottom-up collapsing procedure that operates on a bi-
nary BVH to produce a wide BVH (section 3.1). We then explain
how to integrate this procedure within the PLOC and H-PLOC
binary BVH builders (section 3.2) so that the binary BVH does
not need to be explicitly stored and traversed.

• Second, we assign indices to every node of the wide BVH so
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Figure 2: Bottom-up collapsing procedure for a 4-wide BVH. Ev-
ery node is labelled with a set of references, and a new wide node
is created when the size of this set exceeds a threshold (equal to 2
here).

that siblings have consecutive indices. We also compute triangle
IDs such that all triangles referenced by a node have consecutive
indices (section 3.3).

• Third, we compute and write the compressed nodes of the output
BVH (section 3.3).

3.1. Bottom-up collapsing

We describe here our collapsing algorithm as a stand-alone pro-
cedure that takes as input a binary BVH and constructs a K-wide
BVH. The output of this procedure is the topology of the wide
BVH, where every wide node is represented as the index of its
corresponding node in the input BVH along with the K (or less)
indices of its children in the input BVH. As written in Procedure 1,
the input BVH is traversed bottom-up and during this traversal ev-
ery node is labelled with a set refs of at most K

2 references to prim-
itives or child nodes. For leaf nodes we initialize the references to
the set of primitives contained by the node (lines 2-4). For internal
nodes, we denote R the union of the references of its two children.
We distinguish between two cases depending on the size of R:

• If |R| ≤ K
2 , we use R as the set of references for the current node

(lines 7-9).
• Otherwise, we create a new node in the output wide BVH with its

children given by the set R which contains at most K references.
Then we set the references for the current node to a singleton
containing its own index (lines 9-12).

The CREATEWIDENODE procedure increments an atomic
counter to obtain an index into the wide nodes array, and writes
out the binary node index and the references for the new wide node
at this location. The wide node arrays thus defines the topology of
the wide BVH while the bounding box of each wide node can be
fetched from the corresponding binary node.

3.2. Fused collapsing

In this section we show how to integrate the bottom-up collapsing
procedure into the PLOC and H-PLOC build algorithms.

Procedure 1: Bottom-up collapsing

1 Input T : binary BVH, K: wide BVH arity

2 foreach leaf node n in T do
3 n.refs← n.primitiveIDs;
4 end
5 foreach internal node n in bottom-up traversal of T do
6 R← n.leftChild.refs ∪ n.rightChild.refs;
7 if |R| ≤ K

2 and n ̸= T.root then
8 n.refs← R;
9 else

10 CREATEWIDENODE(n.index, R);
11 n.refs←{ n.index };
12 end
13 end

PLOC algorithm To keep the description of our algorithm self-
contained, we give a quick summary of the PLOC algorithm here
and we defer to the paper [MB17] for more details. PLOC com-
putes a bottom-up clustering of the input primitives, where each
cluster corresponds to a node in the binary BVH. A cluster is de-
scribed by its bounding box and two indices to its children. PLOC
is an iterative algorithm, where every iteration creates new clusters
and updates a list of active cluster indices. The algorithm initial-
izes one cluster per primitive and repeats the following three stages
until a single active cluster is left:

• During the nearest-neighbor stage, all active clusters iterate
through their neighboring clusters according to Morton code and
find their neighbor that minimizes the surface area of the merged
bounding box.

• During the merging stage, pairs of clusters that are each other’s
nearest neighbor are merged together: a new cluster is created,
and one of the two cluster indices is replaced by the new cluster’s
index while the other is marked as inactive.

• The compaction stage removes the inactive clusters indices from
the list.

Fusing with PLOC To fuse the bottom-up collapsing procedure
with PLOC we modify the definition of a cluster: instead of two
children indices, clusters store a set of at most K

2 references. We ini-
tialize the reference set of initial clusters to a singleton containing
their cluster index. Only the merging stage needs to be changed and
we show the necessary modifications in Procedure 2 (highlighted in
blue). These modifications are a straightforward adaptation of the
collapsing procedure using the fact that a cluster in Procedure 2 di-
rectly corresponds to a binary node in Procedure 1. Since we do not
store binary children indices for the clusters our modified PLOC
does not result in a binary BVH, but instead produces an array of
clusters and the topology of the wide BVH. This results in some
memory overhead since our clusters store K

2 references instead of
2 for binary PLOC. Additionally, the topology of the wide BVH is
stored separately using K integers per node of the wide BVH.

Fusing with H-PLOC H-PLOC is a variant of PLOC that builds
the BVH in a single kernel dispatch, and is currently the state-of-
the-art for GPU binary BVH builders [BMB∗24]. H-PLOC can be
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Procedure 2: PLOCMerge with fused collapsing

1 if NN[NN[tidx]] == tidx and tidx < NN[tidx] then
2 clusterIdx← ATOMICADD(clusterCounter, 1);
3 C0← clusters[clusterIndices[tidx]];
4 C1← clusters[clusterIndices[NN[tidx]];
5 aabb← MERGE(C0.box, C1.box);
6 R←C0.refs ∪ C1.refs;
7 if |R|> K

2 or clusterIdx = 2× numPrims-2 then
8 wideIdx← ATOMICADD(wideCounter, 1);
9 wideNodes[wideIdx]← (clusterIdx, R);

10 R←{clusterIdx};
11 end
12 clusterIndices[tidx]← clusterIdx;
13 clusterIndices[NN[tidx]]←−1;
14 clusters[clusterIdx]← (aabb, R );
15 end

decomposed into an outer loop where every thread grows a set of
input clusters based on their Morton code ranges until the number
of clusters exceeds a threshold, and an inner loop where threads
within a warp cooperate to build a subtree from this set of input
clusters using PLOC. At the start of the inner loop, the bounding
boxes of the cluster set are loaded from global memory into shared
memory. We modify this loading step to fetch the cluster references
and store them in shared memory so that they can be accessed dur-
ing the merging stage. Similarly to PLOC, the merging stage is
modified to compute the set of references of the merged cluster and
optionally create a wide node (Procedure 2).

Merge penalty Fusing the collapsing algorithm into the binary
BVH builder not only avoids an additional traversal, but also allows
us to improve the quality of the wide BVH by nudging the build al-
gorithm towards trees that the collapsing algorithm handles well.
To do so we introduce a merge penalty: after computing the dis-
tance between two clusters during the nearest-neighbor phase, we
multiply it by a fixed factor α ≥ 1 if both clusters do not have the
same number of references. This heuristic biases the PLOC builder
towards clusters with a power-of-two number of references and re-
sults in wide hierarchies with more children per node and lower
SAH, especially in the case of 4-wide hierarchies. We determine
experimentally that setting α = 1.3 works well on average.

Output data The output of the fused collapsing stage is both a
cluster array and the topology of the wide BVH. The wide BVH
topology is represented as an array of wide nodes where each node
stores the index of its corresponding cluster, which we will refer
to as its cluster index, and the cluster indices of its children. The
bounding boxes of clusters referenced by the wide BVH topology
will be copied into the final compressed wide BVH (section 3.3).

3.3. Compressed wide BVH

Compressed wide BVHs are the state-of-the-art acceleration struc-
ture for GPU raytracing, therefore we want our construction algo-

rithm to output the nodes in a compressed format. We use a repre-
sentation similar to the one described by Ylitie et al. [YKL17]:

• Every node stores its own bounding box using a 32-bit floating-
point origin and 8-bit scale per dimension.

• Every node stores its child bounding boxes quantized to 8 bits
per dimension.

• The children of a node have consecutive indices, as well as the
triangle it references. This allows us to store a single child base
index and triangle base index per node, along with bitmasks to
specify which slots contain internal nodes and which contain tri-
angles.

Index assignment phase We cannot use the index of a node in the
wide nodes array as its index in the compressed BVH since it does
not satisfy the condition that all siblings have consecutive indices.
Therefore, we introduce an index assignment stage to compute an
output index for every wide node. During this stage, wide nodes
assign output indices to their children. Since wide nodes only have
access to the cluster indices of their children, the output of this
stage is a mapping from cluster index to output index. We dispatch
one thread per wide node, which will reserve a range of output in-
dices by counting the number of internal children and incrementing
an atomic counter. Then it iterates over the children and stores the
mapping from their cluster index to their output index. Similarly,
it counts the number of triangles referenced by the node, reserves
a range of indices with another atomic counter and stores them in
a mapping from input triangle index to output triangle index. We
store the base child index and base triangle index for every wide
node to avoid some dependent memory accesses in the next stage.

Write BVH phase Finally we write out the compressed BVH: we
again spawn one thread per wide node and, using the cluster index
of the wide node, every thread fetches its bounding box from the
cluster array and its output index from the previously computed
mapping. Then it iterates over its children, reads their bounding box
from the cluster array and computes their quantized representation.
Finally, the child base index and triangle base index are copied into
the compressed node which is written at the output index.

3.4. Partial reordering

The ordering of nodes can have a significant impact on raytracing
performance depending on the size of the node structure, the scene,
and the raytracing traversal algorithm. Unfortunately, since our in-
dexing is non-deterministic as it depends on the order of execution
of the atomic operations during the index assignment stage, we can
not guarantee that the compressed wide BVH node ordering is suit-
able for efficient ray traversal. While it would be possible to reorder
the whole hierarchy breadth-first as a post-process, this would re-
quire a traversal of the whole tree to compute the output indices.
Instead we propose to reindex only the nodes of the first levels of
the wide BVH, which are accessed very often and for which spatial
locality is most critical to performance.

We implement this reordering procedure (Procedure 3) with a
parallel breadth-first traversal of the first levels of the wide BVH
using a single threadblock, which allows us to store a queue in
shared memory and to synchronize the threads within the block.

© 2025 The Authors.
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This queue stores pairs of indices, where the first element is the
input index of the node to be processed, and the second element
is the index in the reordered tree. We process one level of the tree
per iteration, with the number of active threads equal to the queue
size: every active thread reads an index pair from the queue (line 7),
then the queue is reset and the active threads fetch the correspond-
ing node and reserve children indices by incrementing an atomic
counter (lines 9-14). Active threads then reserve space in the queue
for their children (line 15), and write index pairs for their children
to the queue if it has enough capacity (lines 15-19). Finally, active
threads update their node with the reordered child index and write
it at the output location (lines 23-28). The loop ends when a thread
cannot write its children into the queue. In our implementation ev-
ery thread processes three items from the queue for K = 4 or two
for K = 8. We use a threadblock of size 1024 which is the hard-
ware limit for our GPU, which results in a queue capacity of 2048
or 3072 depending on K.

To ensure that this reordering does not write over existing nodes,
we initialize the atomic counter used during the index assignment
stage (section 3.3) to a constant m so that the first m nodes are
vacant and can be used for the reordered tree. Taking m equal to
twice the queue capacity guarantees that all new nodes will have an
index lesser than m, thus avoiding any conflicts.

3.5. Implementation details

Integer set representation We represent the set of references with
an integer vector of size K

2 , using an invalid value to represent
empty slots. The procedure to compute the union of two vectors
a and b replaces invalid values of a with values from b until either
b is empty or a is full. Since vectors stored in registers cannot be
indexed dynamically, we compute a 6-bit tag from the size of both
sets and handle the different cases with a switch statement on this
tag. For example if both a and b have two elements with K

2 = 4, the
computed tag is (2 << 3) | 2 and the corresponding switch case
replaces the last two (unused) values of a with the first two values
from b.

Triangle reordering Along with the compressed wide BVH, our
construction pipeline outputs a mapping from input to output trian-
gle indices. We apply this mapping to reorder the triangle data as an
additional step after the construction. Since this triangle reordering
step is also needed when using top-down collapsing, we measure it
separately from the hierarchy construction.

Node layout We use our construction algorithm to build 4-wide
and a 8-wide compressed hierarchies. The 8-wide nodes use a sim-
ilar representation to Ylitie et al’s compressed wide BVH [YKL17]
with 80 bytes per node. We adapt this representation to 4-wide
nodes using 48 bytes per node.

4. Results

Experimental setting We compare H-PLOC with fused col-
lapsing against Benthin et al.’s top-down collapsing algo-
rithm [BMB∗24], which takes as input a binary BVH. Comparing
against H-PLOC+TOPDOWN allows us to understand the differ-
ence in build time and BVH quality due to the collapsing algorithm.

Procedure 3: Partial reordering

1 Input tidx: thread idx, nodes: compressed wide nodes array

2 shared uint2 queue[]←{( rootIdx, 0)};
3 shared uint queueSize← 1;
4 shared uint nodeCounter← 0;
5 while queueSize ̸= 0 and queueSize ≤ CAPACITY do
6 active← tidx < queueSize;
7 if active then
8 indexPair← queue[tidx];
9 end

10 SYNCTHREADS();
11 queueSize← 0;
12 SYNCTHREADS();
13 if active then
14 node← nodes[indexPair.input];
15 outBaseIdx← ATOMICADD(nodeCounter,

node.numChildren);
16 queueIdx← ATOMICADD(queueSize,

node.numChildren);
17 if queueIdx + node.numChildren ≤ CAPACITY

then
18 for i = 0 to node.numChildren-1 do
19 queue[queueIdx+i]←

(node.childBaseIdx+i, outBaseIdx+i);
20 end
21 end
22 end
23 SYNCTHREADS();
24 if active then
25 if queueSize ≤ CAPACITY then
26 node.childBaseIdx← outBaseIdx;
27 end
28 nodes[indexPair.output]← node;
29 end
30 end

We also compare against LBVH+TOPDOWN since we also aim to
enable fast rebuilds for dynamic scenes at the cost of some trac-
ing speed. All experiments were performed on a NVIDA GeForce
RTX 3090 GPU and an Intel Xeon Silver 4214R CPU @ 2.40GHz.
We use our own implementation for the LBVH builder and top-
down collapsing, and we use the H-PLOC implementation from the
HIPRT repository [MKVH24]. Both LBVH and H-PLOC use 64-
bit Morton codes. To evaluate the tracing performance of the BVHs
we use a software raytracing kernel based on the algorithm by Yli-
tie et al [YKL17]. We use child sorting for front-to-back traversal,
since we found it to perform better than the octant traversal method
and it allows us to use the same code for BVH4 and BVH8 traver-
sal. We trace a primary ray and a diffuse secondary ray per pixel at
1920× 1080 resolution, and measure the tracing time for the sec-
ondary ray. We use cosine sampling to compute the direction of the
diffuse ray to measure tracing performance of incoherent rays. We
measured the build time, trace time, SAH and number of traversed
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Algorithm Hierarchy Build SAH Trace Avg traversed Combined time
(ms) (ms) (ms) #nodes (ms)

Bistro Exterior (2.8M triangles)

BVH4 H-PLOC+TOPDOWN 4.9 (×1) 6.9 (×1) 70.3 (×1) 7.9 (×1) 53.1 (×1) 14.8 (×1)
BVH4 LBVH+TOPDOWN 3.9 (×0.80) 5.9 (×0.86) 80.5 (×1.14) 10.3 (×1.32) 64.4 (×1.21) 16.3 (×1.10)
BVH4 OURS 2.8 (×0.57) 4.6(×0.67) 68.9 (×0.98) 10.9 (×1.39) 57.0 (×1.07) 15.6 (×1.05)

BVH8 H-PLOC+TOPDOWN 4.8 (×1) 6.8 (×1) 57.9 (×1) 7.8 (×1) 35.0 (×1) 14.6 (×1)
BVH8 LBVH+TOPDOWN 4.1 (×0.84) 6.0 (×0.88) 63.5 (×1.10) 8.8 (×1.14) 41.7 (×1.19) 14.9 (×1.02)
BVH8 OURS 2.9 (×0.59) 4.7(×0.69) 56.9 (×0.98) 9.4 (×1.21) 38.0 (×1.09) 14.1 (×0.97)

Hairball (2.9M triangles)

BVH4 H-PLOC+TOPDOWN 4.4 (×1) 6.5 (×1) 350.3 (×1) 10.6 (×1) 48.5 (×1) 17.1 (×1)
BVH4 LBVH+TOPDOWN 3.9 (×0.88) 5.9 (×0.91) 363.7 (×1.04) 8.4 (×0.80) 49.2 (×1.01) 14.4 (×0.84)
BVH4 OURS 2.5 (×0.55) 4.4(×0.68) 346.1 (×0.99) 8.8 (×0.83) 53.0 (×1.09) 13.2 (×0.77)

BVH8 H-PLOC+TOPDOWN 4.9 (×1) 7.0 (×1) 295.0 (×1) 8.9 (×1) 34.7 (×1) 15.9 (×1)
BVH8 LBVH+TOPDOWN 4.1 (×0.84) 6.2 (×0.88) 295.6 (×1.00) 8.1 (×0.91) 34.1 (×0.98) 14.3 (×0.90)
BVH8 OURS 2.5 (×0.52) 4.5(×0.64) 284.3 (×0.96) 8.6 (×0.96) 37.8 (×1.09) 13.1 (×0.82)

Rungholt (5.8M triangles)

BVH4 H-PLOC+TOPDOWN 8.6 (×1) 12.9 (×1) 64.9 (×1) 2.0 (×1) 21.8 (×1) 14.9 (×1)
BVH4 LBVH+TOPDOWN 7.9 (×0.92) 12.2 (×0.94) 78.0 (×1.20) 2.0 (×1.02) 22.9 (×1.05) 14.2 (×0.95)
BVH4 OURS 4.5 (×0.52) 8.5(×0.66) 72.4 (×1.12) 2.4 (×1.21) 26.5 (×1.22) 10.9 (×0.73)

BVH8 H-PLOC+TOPDOWN 8.3 (×1) 12.5 (×1) 47.1 (×1) 2.1 (×1) 15.3 (×1) 14.6 (×1)
BVH8 LBVH+TOPDOWN 7.8 (×0.94) 11.9 (×0.95) 54.9 (×1.16) 2.1 (×1.03) 16.0 (×1.04) 14.1 (×0.97)
BVH8 OURS 4.6 (×0.56) 8.7(×0.69) 56.2 (×1.19) 2.7 (×1.31) 20.3 (×1.33) 11.4 (×0.78)

San Miguel (10M triangles)

BVH4 H-PLOC+TOPDOWN 16.1 (×1) 22.7 (×1) 40.8 (×1) 5.2 (×1) 43.3 (×1) 27.9 (×1)
BVH4 LBVH+TOPDOWN 13.4 (×0.83) 19.9 (×0.87) 53.9 (×1.32) 7.0 (×1.35) 63.0 (×1.46) 26.8 (×0.96)
BVH4 OURS 8.8 (×0.54) 14.8(×0.65) 42.9 (×1.05) 6.5 (×1.26) 48.8 (×1.13) 21.3 (×0.76)

BVH8 H-PLOC+TOPDOWN 16.5 (×1) 22.9 (×1) 31.1 (×1) 5.3 (×1) 29.9 (×1) 28.2 (×1)
BVH8 LBVH+TOPDOWN 13.6 (×0.83) 19.9 (×0.87) 38.8 (×1.25) 6.9 (×1.30) 41.7 (×1.40) 26.8 (×0.95)
BVH8 OURS 9.1 (×0.55) 15.1(×0.66) 34.1 (×1.10) 6.8 (×1.28) 38.0 (×1.27) 22.0 (×0.78)

Powerplant (12.8M triangles)

BVH4 H-PLOC+TOPDOWN 19.1 (×1) 27.4 (×1) 25.8 (×1) 10.3 (×1) 54.4 (×1) 37.7 (×1)
BVH4 LBVH+TOPDOWN 17.0 (×0.89) 25.2 (×0.92) 31.2 (×1.21) 12.5 (×1.22) 79.1 (×1.45) 37.8 (×1.00)
BVH4 OURS 9.7 (×0.51) 17.3(×0.63) 25.3 (×0.98) 10.0 (×0.97) 57.9 (×1.07) 27.3 (×0.72)

BVH8 H-PLOC+TOPDOWN 19.9 (×1) 28.0 (×1) 20.9 (×1) 10.0 (×1) 38.4 (×1) 38.0 (×1)
BVH8 LBVH+TOPDOWN 17.5 (×0.88) 25.5 (×0.91) 23.9 (×1.15) 11.6 (×1.16) 51.6 (×1.34) 37.1 (×0.98)
BVH8 OURS 10.1 (×0.51) 17.6(×0.63) 20.9 (×1.00) 11.6 (×1.16) 44.4 (×1.16) 29.2 (×0.77)

Moore Lane House (15.2M triangles)

BVH4 H-PLOC+TOPDOWN 24.3 (×1) 34.6 (×1) 16.2 (×1) 4.0 (×1) 32.7 (×1) 38.5 (×1)
BVH4 LBVH+TOPDOWN 20.6 (×0.85) 30.7 (×0.89) 18.6 (×1.14) 4.6 (×1.16) 40.5 (×1.24) 35.3 (×0.92)
BVH4 OURS 13.1 (×0.54) 22.6(×0.65) 17.7 (×1.09) 4.5 (×1.14) 36.9 (×1.13) 27.0 (×0.70)

BVH8 H-PLOC+TOPDOWN 25.2 (×1) 35.2 (×1) 11.9 (×1) 4.1 (×1) 22.6 (×1) 39.3 (×1)
BVH8 LBVH+TOPDOWN 21.1 (×0.84) 31.0 (×0.88) 13.2 (×1.11) 4.7 (×1.13) 27.1 (×1.20) 35.7 (×0.91)
BVH8 OURS 13.4 (×0.53) 22.8(×0.65) 13.9 (×1.17) 5.1 (×1.23) 28.6 (×1.26) 27.9 (×0.71)

Table 1: Performance comparison between our fused collapsing and top-down collapsing (H-PLOC and LBVH) on static scenes. All results
are averaged over six viewpoints per scene. The Build column measures the whole build process with Morton code computation, sorting,
hierarchy construction and triangle reordering. The Hierarchy column only measures the hierarchy construction step.
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Algorithm Hierarchy Build SAH Trace Avg traversed Combined time
(ms) (ms) (ms) #nodes (ms)

Breaking Lion (1.6M triangles average)

BVH4 H-PLOC+TOPDOWN 2.8 (×1) 4.0 (×1) 160.9 (×1) 1.4 (×1) 38.5 (×1) 5.5 (×1)
BVH4 LBVH+TOPDOWN 2.1 (×0.77) 3.4 (×0.84) 180.4 (×1.12) 1.7 (×1.15) 46.4 (×1.20) 5.0 (×0.92)
BVH4 OURS 1.8 (×0.66) 2.9(×0.71) 161.6 (×1.00) 1.6 (×1.11) 41.9 (×1.09) 4.5 (×0.81)

BVH8 H-PLOC+TOPDOWN 2.9 (×1) 4.3 (×1) 130.0 (×1) 1.5 (×1) 25.5 (×1) 5.8 (×1)
BVH8 LBVH+TOPDOWN 2.2 (×0.76) 3.4 (×0.80) 141.3 (×1.09) 1.7 (×1.11) 30.1 (×1.18) 5.1 (×0.88)
BVH8 OURS 1.9 (×0.67) 2.9(×0.69) 133.2 (×1.02) 1.8 (×1.17) 30.1 (×1.18) 4.7 (×0.81)

Flooded Sponza (4.8M triangles average)

BVH4 H-PLOC+TOPDOWN 7.5 (×1) 11.0 (×1) 54.3 (×1) 4.0 (×1) 37.9 (×1) 15.0 (×1)
BVH4 LBVH+TOPDOWN 6.1 (×0.81) 9.6 (×0.88) 63.0 (×1.16) 4.4 (×1.09) 42.1 (×1.11) 14.0 (×0.93)
BVH4 OURS 4.3 (×0.58) 7.4(×0.68) 57.5 (×1.06) 4.7 (×1.19) 42.9 (×1.13) 12.1 (×0.81)

BVH8 H-PLOC+TOPDOWN 7.7 (×1) 11.1 (×1) 40.8 (×1) 4.1 (×1) 26.0 (×1) 15.3 (×1)
BVH8 LBVH+TOPDOWN 6.3 (×0.81) 9.7 (×0.87) 45.6 (×1.12) 4.5 (×1.08) 28.6 (×1.10) 14.1 (×0.93)
BVH8 OURS 4.5 (×0.58) 7.5(×0.68) 45.6 (×1.12) 5.2 (×1.25) 32.4 (×1.24) 12.7 (×0.83)

Falling Bunnies (5.3M triangles average)

BVH4 H-PLOC+TOPDOWN 8.4 (×1) 12.2 (×1) 9.5 (×1) 2.4 (×1) 23.8 (×1) 14.6 (×1)
BVH4 LBVH+TOPDOWN 6.7 (×0.80) 10.4 (×0.86) 12.3 (×1.29) 3.2 (×1.29) 32.2 (×1.35) 13.6 (×0.93)
BVH4 OURS 5.0 (×0.60) 8.4(×0.69) 10.7 (×1.13) 2.9 (×1.18) 27.6 (×1.16) 11.2 (×0.77)

BVH8 H-PLOC+TOPDOWN 8.5 (×1) 12.2 (×1) 6.8 (×1) 2.4 (×1) 16.3 (×1) 14.6 (×1)
BVH8 LBVH+TOPDOWN 7.1 (×0.83) 10.7 (×0.88) 8.4 (×1.24) 3.0 (×1.25) 21.1 (×1.29) 13.7 (×0.94)
BVH8 OURS 5.2 (×0.61) 8.5(×0.70) 8.1 (×1.20) 3.1 (×1.27) 20.9 (×1.28) 11.6 (×0.79)

Splash (6.9M triangles average)

BVH4 H-PLOC+TOPDOWN 11.1 (×1) 16.2 (×1) 21.8 (×1) 2.4 (×1) 29.1 (×1) 18.6 (×1)
BVH4 LBVH+TOPDOWN 9.4 (×0.85) 14.4 (×0.89) 23.2 (×1.06) 2.5 (×1.01) 27.9 (×0.96) 16.8 (×0.90)
BVH4 OURS 6.1 (×0.55) 10.6(×0.65) 24.2 (×1.11) 3.1 (×1.28) 33.4 (×1.15) 13.7 (×0.74)

BVH8 H-PLOC+TOPDOWN 10.3 (×1) 15.2 (×1) 15.4 (×1) 2.3 (×1) 19.8 (×1) 17.6 (×1)
BVH8 LBVH+TOPDOWN 8.9 (×0.86) 13.7 (×0.90) 16.3 (×1.06) 2.2 (×0.96) 19.0 (×0.96) 15.9 (×0.91)
BVH8 OURS 6.2 (×0.61) 10.7(×0.70) 18.5 (×1.20) 3.2 (×1.37) 25.4 (×1.28) 13.9 (×0.79)

Table 2: Performance comparison between our fused collapsing and top-down collapsing (H-PLOC and LBVH) on dynamic scenes. All
results are averaged over the whole animation.

nodes for a set of dynamic scenes (Table 2) and static scenes (Table
1). All scenes are shown in the accompanying video.

Build time Building a compressed wide BVH from a list of tri-
angles consists of many steps: Morton code computation, sort-
ing, hierarchy construction and triangle reordering. We use tri-
angles as our primitives instead of triangle pairs which are used
in the H-PLOC paper. Since we only change the hierarchy con-
struction step, we measure it separately in the Hierarchy col-
umn. However to be representative of a use-case in a real sce-
nario, we also measure the time for the whole build process in
the Build column. Our algorithm is consistently faster than both
H-PLOC+TOPDOWN and LBVH+TOPDOWN for hierarchy con-
struction (33%-49% speedup), which leads to reduced overall build
times (31%-37% speedup). We break down the hierarchy construc-
tion time for OURS and H-PLOC+TOPDOWN in Figure 3: top-
down collapsing takes up most of the hierarchy construction time
of H-PLOC+TOPDOWN, and our approach achieves significant

speedups by avoiding this additional traversal. The fused collapsing
stage is the main bottleneck of our algorithm, and is slightly slower
than the binary H-PLOC builder due to reduced occupancy and the
overhead of creating wide nodes. We present a more comprehensive
breakdown of the construction time in the supplementary material.

SAH Since our bottom-up collapsing does not take node areas into
account, it tends to result in a higher SAH than top-down collapsing
which greedily minimizes child areas (+13% at worst for BVH4,
+20% for BVH8). For 4-wide hierarchies our approach achieves
similar SAH to TOPDOWN on most scenes, thanks to the fact that
the collapsing is more constrained and that our merge penalty is
more effective on 4-wide hierarchies.

Trace time Our algorithm overall increases the tracing time com-
pared to H-PLOC+TOPDOWN which is expected as our objective
is to enable fast wide BVH construction at the cost of some tracing
performance. This increase in tracing time is very scene-dependent,

© 2025 The Authors.
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Figure 3: Breakdown of the hierarchy construction cost for OURS

and H-PLOC+TOPDOWN for a 4-wide BVH

Trace SAH Avg traversed Max traversed

BVH4 −12% −7% −10% −22%
BVH8 −1% −3% −3% −2%

Table 3: We measure the effect of our merge penalty on the trace
time, SAH, and number of traversed nodes per ray (average and
maximum) on our test scenes. We show here the relative difference
for these measurements, averaged over the scenes (lower is better).

up to a 39% increase for the Bistro Exterior scene and an average
of +13% for the BVH4 and +22% for the BVH8 on other scenes.

Combined time To estimate the overall performance impact of
our method over TOPDOWN, we compute the combined time by
summing the Build and Trace columns. Our algorithm achieves a
speedup of 18-29% on all scenes except Bistro Exterior, where it
is 5% slower. In general larger scenes benefit more from our algo-
rithm as tracing time is less sensitive to the number of primitives
than the build time. We repeat the experiments with 4 and 8 in-
coherent secondary rays per pixel and show the results in the sup-
plementary material. Our algorithm still achieves lower combined
time on all scenes except Bistro Exterior at 4spp, and for 8spp our
approach still performs better on large scenes such as Powerplant
and Moore Lane House.

Tree quality and merge penalty We first examine the impact of
the merge penalty on the topology of the resulting BVH. Table 4
compares the average number of children per node using top-down
collapsing against our bottom-up algorithm with and without merge
penalty. It shows that bottom-up collapsing achieves better slot uti-
lization for both BVH4 and BVH8, and that the merge penalty pro-
duces fuller trees with fewer nodes. However this single statistic
does not tell the whole story, as the top-down and bottom-up ap-
proaches produce trees with different characteristics. The first row
of Figure 4 shows that top-down collapsing results in slot utiliza-

Children / node Num nodes

BVH4 BVH8 BVH4 BVH8

Top-down 3.1 4.1 100% 100%
Ours, α = 1 3.4 5.9 87% 63%
Ours, α = 1.3 3.7 6.4 76% 56%

Table 4: Comparison of the average number of children per node
and number of nodes between top-down collapsing, bottom-up
collapsing without merge penalty and bottom-up collapsing with
merge penalty.

tion that is very high for the first levels of the tree and decreases as
the nodes get deeper. Inversely, our bottom-up collapsing has simi-
lar behaviour at all levels of the tree. While the bottom-up approach
results in a higher slot utilization on average, thus being more mem-
ory efficient, its behaviour is sub-optimal with respect to the SAH
since a node with empty slots can improve the SAH by pulling up
grand-children, which is what the top-down approach does. The
bottom-up approach produces deeper trees with an average child
area that decreases slowly compared to top-down collapsing (sec-
ond row of Figure 4), which is caused both by the lower slot utiliza-
tion at higher levels and the fact that top-down collapsing greedily
minimizes child areas. The merge penalty does improve the rate of
decrease of node areas for the BVH4, but has little impact on the
BVH8. Finally we evaluate the impact of the merge penalty on the
BVH quality and raytracing performance in Table 3, which shows
that the merge penalty improves the trace time, SAH, and number
of traversed nodes on average. As suggested by the results of Fig-
ure 4, it is much more effective for 4-wide hierarchies than 8-wide
hierarchies.

Node ordering To measure the effectiveness of our partial reorder-
ing (section 3.4) we compare the raytracing performance of the
same wide BVH without node reordering against partial breadth-
first reordering and full breadth-first reordering. We use the perfor-
mance of the non-reordered BVH as a baseline and show in Figure
5 the increase in raytracing throughput that we obtain using our
partial reordering (in blue) compared to full reordering (in orange).
Partial reordering results in a 4-19% increase in raytracing through-
put for the BVH4 and 0-10% for the BVH8. Since this additional
reordering step is very cheap (1% of build time on average), it can
be enabled for all scenes as even when it doesn’t increase tracing
performance (on Rungholt for example), the additional cost is min-
imal. Since it is limited to the first levels of the hierarchy, partial
reordering does not match the tracing performance of a fully re-
ordered tree, showing a 33% difference on Bistro Exterior in the
worst case. The BVH8 is overall less sensitive to node ordering
than the BVH4 which is expected since spatial locality matters less
when the size of the structure approaches the size of a cache line
(128 bytes on our machine).

Conclusion We presented a novel approach for the construction
of wide BVHs on the GPU without traversing a binary BVH.
By fusing a bottom-up collapsing procedure with H-PLOC, we
achieve significant reductions in build time compared to previ-
ous approaches. This makes our algorithm well-suited for dynamic

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



Wilhem Barbier & Mathias Paulin / Fused Collapsing for Wide BVH Construction 9 of 10

10 20 30
2.0

2.5

3.0

3.5

4.0

A
vg

. c
hi

ld
re

n 
/ n

od
e

BVH4

10 20

2

4

6

BVH8

10 20 30
Depth

103

106

109

A
vg

. c
hi

ld
 n

od
e 

ar
ea

10 20
Depth

102

105

108

Top-down Ours, α = 1 Ours, α = 1.3

Figure 4: We measure the average number of children per node,
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Figure 5: Relative raytracing performance increase of node re-
ordering, comparing the tracing throughput of a partially re-
ordered BVH (section 3.4) and fully reordered BVH against a non-
reordered BVH.

scene rendering where BVH construction has a major impact on
the total frame time. Our proposal can be implemented easily with
a few modifications to an existing H-PLOC builder. Extending this
method to a wider set of BVHs such as hierarchies with K > 8
or using a TLAS/BLAS decomposition would be a worthwhile av-
enue for future work. We are also interested in a deeper analysis of
the impact of the merge penalty and node ordering to enable better
tracing performance using improved heuristics.
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